Skip to main content

Minimising surface and ground-water pollution from fertiliser application

  • Chapter
  • 455 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 71))

Abstract

Transport of nutrients to natural waters is largely controlled by the volume and rate of water movement through the soil body and across the soil surface. Precipitation and infiltration are of primary importance in affecting these volumes and these rates, but interception and evapotranspiration processes are also important. Precipitation is the driving force of the hydrologic processes. Infiltration controls the distribution of precipitation between surface and subsurface flow processes. Infiltrated water moves downwards through the soil profile, first replenishing storage and then transporting chemicals dissolved in the soil solution to greater depths (leaching). Surface runoff, i.e. the part of rainwater which flows over the land surface, may provide detachment, entrainment and transport mechanisms for the movement of solid soil particles (erosion) by the impact of raindrops and the shear stress resulting from overland flow. Soil particles may also be detached and transported by the action of wind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrow N J 1978 The description of phosphate adsorption curves. J. Soil Sci. 29, 447–462.

    Article  CAS  Google Scholar 

  • Blevins R L and Frye W W 1993 Conservation tillage: An ecological approach to soil management. Adv. Agron. 51, 32–78.

    Google Scholar 

  • Burwell R E, Schuman G E, Heinemann H G and Spomer R G 1977 Nitrogen and phosphorus movement from agricultural watersheds. J. Soil Water Conserv. 32, 230–266.

    Google Scholar 

  • Candussio R and Visintini Romanin M 1980 Fosforo e azoto di origine agraria nei corpi idrici della Regione Friuli-Venezia Giulia. Ann. 1st. Sper. Nutriz. Piante 10, 1–52.

    Google Scholar 

  • Caporali F, Nannipieri P and Pedrazzini F 1991 Nitrogen contents of streams draining an agricultural and a forested watershed in Central Italy. J. Environ. Qual. 10, 72–76.

    Article  Google Scholar 

  • Chiaudani G, Gerletti M, Marchetti R, Provini A and Vighi M 1978 n problema dell’eutrofizzazione in Italia. Quaderni IRSA 42, 3–93.

    Google Scholar 

  • Ciavatta C, Vittori Antisari L and Sequi P 1990 Interferences of soluble silica in the determination of orthophosphate-P. J. Environ. Qual. 19, 761–765.

    Article  Google Scholar 

  • Clay D E, Clapp C E and Molina J A E 1993 Mineralization of nitrogen in fertilised-acidified lime-amended soils. Biol. Fertil. Soil 15, 249–252.

    Article  CAS  Google Scholar 

  • Isermann K 1990 Share of agriculture in nitrogen and phosphorus emissions into the surface waters of Western Europe against the background of their eutrophication. Fertil. Res. 26, 253–269.

    Article  CAS  Google Scholar 

  • ISTAT 1991 Statistiche Forestall. Istituto Poligrafico dello Stato, Roma.

    Google Scholar 

  • Kafkafi U 1994 Considerations in fertiliser application to prevent ground water contamination. Proc. Int. Conf. on Modern Agriculture and the Environment. Rehovot, Israel. 2–6 October.

    Google Scholar 

  • Li Y and Ghodrati M 1994 Preferential transport of nitrate through soil columns containing root channels. Soil Sci. Soc. Am. J. 58, 653–659.

    Article  CAS  Google Scholar 

  • Ministero dell’Ambiente 1992 Relazione sullo stato dell’ambiente. Istituto Poligrafico e Zecca dello Stato, Roma.

    Google Scholar 

  • Okereke V I, Baumann E R, Ai Dustin T, Schulze S and Lutz D 1983 Midwest (USA) reservoir water quality modification, part 1, 2 and 3. Water, Air and Soil Pollution 37, 309–354.

    Article  Google Scholar 

  • Sequi P 1989 L’importanza del suolo negli equilibri ambientali. In Chimica del suolo. Ed. P Sequi. pp 533–545. Pàtron, Bologna.

    Google Scholar 

  • Sequi P and Vittori Antisari L 1989 Dinamismo chimico dell’azoto: Aspetti agronomici ed ambientali. Riv. Agron. 23, 30–42.

    Google Scholar 

  • Sequi P, Vianello G and Ciavatta C 1991a An Italian approach to the determination of areas vulnerable to pollution. In Soil Vulnerability to Pollution in Europe. Eds N H Batjes and E M Bridges, pp 91–97. ISRIC, Wageningen.

    Google Scholar 

  • Sequi P, Ciavatta C and Vittori Antisari L 1991b Phosphate fertilisers and phosphorus loadings to river and seawater. Agrochimica 35, 200–211.

    CAS  Google Scholar 

  • Seta A K, Blevins R L, Frye W W and Barfield B J 1993 Reducing soil erosion and agricultural chemical losses with conservation tillage. J. Environ. Qual. 22, 661–665.

    Article  Google Scholar 

  • Sharpley A N 1985 Phosphorus and eutrophication. In Proceedings of Symposium on Plant Nutrient Use and the Environment, pp 247–270. Kansas City, MO.

    Google Scholar 

  • Sharpley A N 1993 An innovative approach to estimate bioavailable orthophosphate in agricultural runoff using iron oxide-impregnated paper. J. Environ. Qual. 22, 597–601.

    Article  CAS  Google Scholar 

  • Sharpley A N and Syers J K 1979 Phosphorus inputs into a stream draining an agricultural watershed: II. Amounts and relative significance of runoff types. Water Air and Soil Pollution 11, 417–428.

    CAS  Google Scholar 

  • Sharpley A N, Ahuja L R and Menzel R G 1981 The kinetics of phosphorus in runoff sediments. J. Environ. Qual. 10, 386–391.

    Article  Google Scholar 

  • Sharpley A N, Indiati R, Ciavatta C, Rossi N and Sequi P 1994 Interlaboratory comparison of iron oxide impregnated paper to estimate bioavailable phosphorus. J. Environ. Qual. 23, 14–18.

    Article  CAS  Google Scholar 

  • Sibbesen E 1981 Some new equations to describe phosphate sorption by soils. J. Soil Sci. 32, 67–74.

    Article  CAS  Google Scholar 

  • Sonzogni W C, Chapra S C, Armstrong D E and Logan T J 1982 Bioavailability of phosphorus inputs to lakes. J. Environ. Qual. 11, 555–563.

    Article  CAS  Google Scholar 

  • Spalding R F and Exner M E 1993 Occurrence of nitrate in groundwater. A review. J. Environ. Qual. 22, 392–402.

    Article  CAS  Google Scholar 

  • Vollenweider R A 1968 Water management research. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report, OCDE, Directorate for Scientific Affairs.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sequi, P., Indiati, R. (1997). Minimising surface and ground-water pollution from fertiliser application. In: Rosen, D., Tel-Or, E., Hadar, Y., Chen, Y. (eds) Modern Agriculture and the Environment. Developments in Plant and Soil Sciences, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5418-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5418-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6279-4

  • Online ISBN: 978-94-011-5418-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics