Alpern M. and Moeller J. (1977). The red and green cone visual pigments of deuteranomalous trichromacy. J. Physiol. (Lond.) 266:647–675
PubMed
CAS
Google Scholar
Bowmaker J.K., Dartnall H.J.A. and Mollon J.D. (1980). Microspectrophotometric demonstration of four classes of photoreceptor in the Old World primate, Macaca fascicularis. J. Physiol. (Lond.) 298:131–143
PubMed
CAS
Google Scholar
Boynton R.M. and Kambe N. (1980). Chromatic difference steps of moderate size measured along theoretically critical axes. Colour Res. Appl. 5:13–23
CrossRef
Google Scholar
DeMarco P., Pokorny J. and Smith V.C. (1992). Full-spectrum cone sensitivity functions for Xchromosome-linked anomalous trichromats. J. Opt. Soc. Am. A 9:1465–1476
PubMed
CrossRef
CAS
Google Scholar
Franceschetti A. (1928). Die Bedeutung der Einstellungsbreite am Anomaloskop für die Diagnose der einzelnen Typen der Farbensinnstörungen, nebst Bemerkungen über ihren Vererbungsmodus. Schweiz. Med.Wschr. 58:1273–1279
Google Scholar
He J.C. and Shevell S.K. (1994). Individual differences in cone photopigments of normal trichromats measured by dual Rayleigh-type color matches. Vision Res. 34:367–376
PubMed
CrossRef
CAS
Google Scholar
He J.C. and Shevell S.K. (1995) Variation in color matching and discrimination among deuteranomalous trichromats: theoretical implications of small differences in photopigments. Vision Res. 35:2579–2588
PubMed
CrossRef
CAS
Google Scholar
Hurvich L.M. (1972). Color vision deficiencies. In: Jameson D. and Hurvich L.M. (eds.), Handbook of Sensory Physiology, Vol. VII/4:582–624. Springer, Berlin
Google Scholar
Jameson D. and Hurvich L.M. (1956). Theoretical analysis of anomalous trichromatic color vision. J. Opt. Soc. Am. 46:1075–1089
PubMed
CrossRef
Google Scholar
Mitchell D.E. and Rushton W.A.H. (1971). Visual pigments in dichromats. Vision Res. 11:10331–11043
Google Scholar
Nagy A.L., Purl K.F. and Houston J.S. (1985). Cone mechanisms underlying the color discrimination of deutan color deficients. Vision Res. 25:661–669
PubMed
CrossRef
CAS
Google Scholar
Nathans J., Thomas D. and Hogness D.S. (1986a). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202
PubMed
CrossRef
CAS
Google Scholar
Nathans J., Piantanida T.P., Eddy R.L., Shows T.B. and Hogness D.S. (1986b). Molecular genetics of inherited variation in human color vision. Science 232:203–210
PubMed
CrossRef
CAS
Google Scholar
Nelson J.H. (1938). Anomalous trichromatism and its relation to normal trichromatism. Proc. Phys. Soc. (Lond.) 50:661–697
CrossRef
Google Scholar
Pokorny J., and Smith V.C. (1976). Effect of field size on red-green color mixture equations. J. Opt. Soc. Am. 66:705–708
PubMed
CrossRef
CAS
Google Scholar
Pokorny J., Smith V.C. and Katz I. (1973). Derivation of the photopigment absorption spectra in anomalous trichromats. J. Opt. Soc. Am. 63:232–237
PubMed
CrossRef
CAS
Google Scholar
Regan B.C., Reffin J.P. and Mollon J.D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Res. 34:1279–1299
PubMed
CrossRef
CAS
Google Scholar
von Kries J. (1924). Normal and anomalous color systems. In: von Helmholtz H., Treatise on Physiological Optics (3rd ed), Vol. II (Southall, J.P.C., Trans.): 395–425. Optical Society of America, Rochester, NY
Google Scholar
Willis M.P. and Farnsworth D. (1952). Comparative evaluation of anomaloscopes. Med. Res. Lab. Rep. No 190, Bur. Med. Surg. U. S. Navy Dept., Washington D. C
Google Scholar
Wright W.D. (1929). A re-determination of the trichromatic coefficients of spectral colors. Trans. Opt. Soc. 30:141–164
CrossRef
Google Scholar
Wright W.D. (1946). Researches on Normal and Defective Colour Vision. Henry Kimpton, London
Google Scholar