Skip to main content

Wetting: Static and Dynamic Contact Lines

  • Chapter
Liquid Film Coating

Abstract

Wetting is basic to coating. Initially air contacts the solid, and during coating the liquid displaces the air from the moving solid surface so that none is visible in the coated film. Thus, coating is a process of dynamic wetting. For uniform coating, the wetting line must remain straight and advance steadily. At sufficiently high speeds, however, the wetting line becomes segmented and unsteady as a thin air film forms between the solid and liquid. The air film disrupts the uniformity of the coated film, and often air bubbles appear in the coating. Dynamic wetting failure limits coating speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ablett, R. 1923. An investigation of the angle of contact between paraffin wax and water. Phil. May. 46: 244–256.

    CAS  Google Scholar 

  • Adamson, A. W. 1982. Physical Chemistry of Surfaces. 4th edn. New York: Wiley.

    Google Scholar 

  • Seguin, A. E. 1954. Method of coating strip material. US Patent 2,681,234.

    Google Scholar 

  • Berg, J. C. ed. 1993. Wettability. Surfactant Science Series, Volume 49. New York: Marcel Dekker.

    Google Scholar 

  • Blake, T. D. 1993. Dynamic contact angles and wetting kinetics. In Wettability, Surfactant Science Series, Volume 49. ed. J. Berg. New York: Marcel Dekker.

    Google Scholar 

  • Blake, T. D., Clarke, A. and Ruschak, K. J. 1994. Hydrodynamic assist of dynamic wetting. AIChE J. 40: 229–242.

    Article  CAS  Google Scholar 

  • Blake, T. D. and Haynes, J. M. 1969. Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30(3): 421–423.

    Article  CAS  Google Scholar 

  • Blake, T. D. and Haynes, J. M. 1973. Contact-angle hysteresis. Progress in Surface and Membrane Science. Volume 6. New York: Academic Press.

    Google Scholar 

  • Blake, T. D. and Ruschak, K. J. 1979. A maximum speed of wetting. Nature. 282: 489–491.

    Article  Google Scholar 

  • Bracke, M., De Voeght, F. and Joos, P. 1989. The kinetics of wetting: the dynamic contact angle. Prog. Colloid Polym. Sci. 79: 142–149.

    Article  CAS  Google Scholar 

  • Buonopane, R. A., Gutofl, E. B. and Rimore, M. M. T. 1986. Effect of plunging tape surface properties on air entrainment velocity. AIChE J. 32: 682–683.

    Article  CAS  Google Scholar 

  • Burley, R. 1992. Air entrainment and the limits of coatability. JOCCA. 5: 192–202.

    Google Scholar 

  • Burley, R. and Jolly, R. P. S. 1984. Entrainment of air into liquids by a high-speed continuous solid surface. Chem. Eng. Sci. 39(9): 1357–1372.

    Article  CAS  Google Scholar 

  • Burley, R. and Kennedy, B. S. 1976. An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Eng. Sci. 31: 901–911.

    Article  CAS  Google Scholar 

  • Cain, J. B., Francis, D. W., Venter, R. D. and Neumann, A. W. 1983. Dynamic contact angles on smooth and rough surfaces. J. Colloid Interf Sci. 94: 123–130.

    Article  CAS  Google Scholar 

  • Cherry, B. W. and Holmes, C. M. 1969. Kinetics of wetting of surfaces by polymers. J. Colloid Interface Sci. 29: 174.

    Article  CAS  Google Scholar 

  • Cox, R. G. 1986. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168: 169–194.

    Article  CAS  Google Scholar 

  • de Gennes, P. G. 1985. Wetting: statics and dynamics. Rev. Modern Physics. 57(3): 827–863.

    Article  Google Scholar 

  • de Gennes, P. G., Hua, X. and Levinson, P. 1990. Dynamics of wetting: local contact angles. J. Fluid Mech. 212: 55–63.

    Article  Google Scholar 

  • Dussan V., E. B. 1976. The moving contact line: the slip boundary condition. J. Fluid Mech. 77: 665–684.

    Article  Google Scholar 

  • Dussan V., E. B. 1979. On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11: 371–400.

    Article  Google Scholar 

  • Dussan V., E. B. and Davis, S. H. 1974. On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65: 71–95.

    Article  Google Scholar 

  • Dussan V., E. B., Rame, E. and Garoff, S. 1991. On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230: 97–116.

    Article  Google Scholar 

  • Elliott, G. E. P. and Riddiford, A. C. 1967. Dynamic contact angles. I. The effect of impressed motion. J. Colloid Interface Sci. 23: 389–398.

    Article  CAS  Google Scholar 

  • Glasstone, S., Laidler, K. J. and Eyring, H. J. 1941. The Theory of Rate Processes. New York: McGraw-Hill.

    Google Scholar 

  • Gutoff, E. B. and Kendrick, C. E. 1987. The flow limits of coatability on a slide coater. AIChE J. 33: 141–145.

    Article  CAS  Google Scholar 

  • Hansen, R. J. and Toong, T. Y. 1971. Dynamic contact angle and its relationship to forces of hydrodynamic origin. J. Colloid Interface Sci. 37: 196–207.

    Article  CAS  Google Scholar 

  • Hocking, L. M. and Rivers, A. D. 1982. The spreading of a drop by capillary action. J. Fluid Mech. 121: 425–442.

    Article  Google Scholar 

  • Hoffman, R. L. 1975. A study of the advancing interface. I. Interface shape in liquid-gas systems. J. Colloid Interface Sci. 50(2): 228–241.

    Article  CAS  Google Scholar 

  • Huh, C. and Mason, S. G. 1977. The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81: 401–419.

    Article  Google Scholar 

  • Huh, C. and Scriven, L. E. 1971. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1): 85–101.

    Article  CAS  Google Scholar 

  • Inverarity, G. 1969a. The wetting of glass fibres by liquids and polymers. PhD thesis, Univ. Manchester.

    Google Scholar 

  • Inverarity, G. 1969b. Dynamic wetting of glass fibre and polymer fibre. Brit. Polymer J. 1: 245–251.

    Article  CAS  Google Scholar 

  • Janson, K. M. 1985. Moving contact lines on a two-dimensional rough surface. J. Fluid Mech. 154: 1–28.

    Article  Google Scholar 

  • Jansons, K. M. 1986. Moving contact lines at non-zero capillary number. J. Fluid Mech. 167: 393–407.

    Article  CAS  Google Scholar 

  • Jiang, T., Oh, S. and Slattery, J. C. 1979. Correlation for dynamic contact angle. J. Colloid Interface Sci. 69(1): 74–77.

    Article  CAS  Google Scholar 

  • Joanny, J. F. and Robbins, M. O. 1990. Motion of a contact line on a heterogeneous surface. J. Chem. Phys. 92: 3206–3212.

    Article  CAS  Google Scholar 

  • Johnson, R. E. and Dettre, R. H. 1993. Wetting of low-energy surfaces. In Wettability. Surfactant Science Series. Volume 49, ed. J. Berg. New York: Marcel Dekker.

    Google Scholar 

  • Johnson, R. E., Dettre, R. H. and Brandreth, D. A. 1977. Dynamic contact angles and contact angle hysteresis. J. Colloid Interface Sci. 62(2): 205–212.

    Article  CAS  Google Scholar 

  • Joos, F. M. 1992. Leveling of a liquid layer over a sorbing surface. AIChE Spring National Meeting, New Orleans, LA, pap. 49d.

    Google Scholar 

  • Kalliadasis, S. and Chang, H. 1994. Apparent dynamic contact angle of an advancing gas-liquid meniscus. Phys. Fluids. 6: 12–23.

    Article  CAS  Google Scholar 

  • Kistler, S. F. 1983. The fluid mechanics of curtain coating and related viscous free surface flows with contact lines. PhD thesis. Univ. Minnesota, Minneapolis.

    Google Scholar 

  • Levich, V. G. 1962. Physicochemical Hydrodynamics. Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  • Menchaca-Rocha, A. 1992. The mobility of mercury drops on rough glass surfaces. J. Colloid Interface Sci. 149: 472–480.

    Article  CAS  Google Scholar 

  • Miller, Clarence, A. and Neogi, P. 1985. Interfacial Phenomena. New York: Marcel Dekker.

    Google Scholar 

  • Miller, F. D. and Wheeler, J. J. 1962. Coating high viscosity liquids. US Patent 3,206,323.

    Google Scholar 

  • Miyamoto, Kimiaki. 1991. On the mechanism of air entrainment. Industrial Coating Research. 1: 71–88.

    Google Scholar 

  • Mues, W., Hens, J. and Boiy, L. 1989. Observation of a dynamic wetting process using laser-Doppler velocimetry. AIChE J. 35(9): 1521–1526.

    Article  CAS  Google Scholar 

  • Ngan, C. G. and Dussan V. E. B. 1989. On the dynamics of liquid spreading on solid surfaces. J. Fluid Mech. 209: 191–226.

    Article  Google Scholar 

  • Oliver, J. F., Huh, C. and Mason, S. G. 1977. Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 59(3): 568–581.

    Article  CAS  Google Scholar 

  • Perry, R. T. 1967. Fluid mechanics of entrainment through liquid-liquid and liquid-solid junctures. PhD thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Petrov, P. G. and Petrov, J. G. 1992. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8: 1762–1767.

    Article  CAS  Google Scholar 

  • Ruschak, Kenneth J. 1976. Limiting flow in a premetered coating device. Chem. Eng. Sci. 31: 1057–1060.

    Article  CAS  Google Scholar 

  • Ruschak, Kenneth J. 1985. Coating flows. Ann. Rev. Fluid Mech. 17: 65–89.

    Article  Google Scholar 

  • Schrader, M. E. and Loeb, G. L. eds. 1992. Modern Approaches to Wettability - Theory and Applications. New York: Plenum Press.

    Google Scholar 

  • Schwartz, A. M. and Tejada, S. B. 1972. Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38: 359–375.

    Article  CAS  Google Scholar 

  • Seebergh, J. E. and Berg, J. C. 1992. Dynamic wetting in the low capillary number regime. Chem. Eng. Sci. 47: 4455–4464.

    Article  CAS  Google Scholar 

  • Tanner, L. H. 1979. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12: 1473–1484.

    Article  CAS  Google Scholar 

  • Teletzke, G. F., Davis, H. T. and Scriven, L. E. 1988. Wetting hydrodynamics Revue Phys. Appl. 23: 989–1007.

    Article  Google Scholar 

  • Tilton, J. N. 1988. The steady motion of an interface between two viscous liquids in a capillary tube. Chem. Eng. Sci. 43: 1371–1384.

    Article  CAS  Google Scholar 

  • Voinov, O. V. 1976. Hydrodynamics of wetting. Fluid Dynamics. 11: 714–721.

    Article  Google Scholar 

  • Washburn, E. W. 1921. The dynamics of capillary flow. Phys. Rev. 17: 273–283.

    Article  Google Scholar 

  • Wilkinson, W. L. 1975. Entrainment of air by a solid surface entering a liquid/air interface. Chem. Eng. Sci. 30: 1227–1230.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blake, T.D., Ruschak, K.J. (1997). Wetting: Static and Dynamic Contact Lines. In: Kistler, S.F., Schweizer, P.M. (eds) Liquid Film Coating. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5342-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5342-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6246-6

  • Online ISBN: 978-94-011-5342-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics