Skip to main content

Analysis and Design of Internal Coating Die Cavities

  • Chapter
Liquid Film Coating

Abstract

The purpose of the internal cavities of coating dies of all types is to distribute the coating liquid in a manner which in conjunction with the rest of the coating process produces a liquid film with uniform dimensions and properties. Whereas the constancy of feed rate and take-away speed play the biggest role in the down-web uniformity of the final film, the liquid passages internal and external to the coating die have the biggest impact on the cross-web uniformity of the coated liquid. Although cross-web nonuniformities in the liquid passages external to the coating die can drastically affect the final coating uniformity, the focus of this chapter is the influence on the cross-web uniformity of the passages internal to the coating die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acrivos, A., Babcock, B. D. and Pigford, R. L. 1959. Flow distribution in manifolds. Chemical Engineering Science. 10:112–124.

    Article  CAS  Google Scholar 

  • Anthony, J. D., Jr., Leffew, K. W. and Trentacosta, J. D. 1988. Thickness control system for an extrusion coating apparatus. US Patent 4,765,941.

    Google Scholar 

  • Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Binding, B M. 1988. An approximate analysis for contraction and converging flows. J. Non-Newt. Fluid Mech. 27: 173–189.

    Article  CAS  Google Scholar 

  • Binding, B M. 1991. Further considerations of axisymmetric contraction flows. J. Non-Newt. Fluid Mech. 41: 27–42.

    Article  CAS  Google Scholar 

  • Bird, R. B., Armstrong, R. C. and Hassager, O. 1987. Dynamics of Polymeric Liquids. New York: John Wiley.

    Google Scholar 

  • Blodgett, O. W. 1966. Design of Welded Structures. Cleveland, Ohio: James F. Lincoln Arc Welding Foundation.

    Google Scholar 

  • Boger, D. V. 1987. Viscoelastic flows through contractions. Ann. Rev. Fluid Mech. 19: 157–182.

    Article  Google Scholar 

  • Booy, M. L. 1982. A network flow analysis of extrusion dies and other flow systems. Polymer Eng. Sci. 22(7): 432–437.

    Article  CAS  Google Scholar 

  • Butler, T. I. 1992. Effects of flow instability in coextruded films. TAPPI Journal, September: 205–211.

    Google Scholar 

  • Cameron, A. 1981. Basic Lubrication Theory. Chichester, West Sussex, England: Ellis Norwood.

    Google Scholar 

  • Carley, J. F. 1954. Flow of melts in ‘crosshead’-slit dies; criteria for die design. J. Appl. Phys. 9: 1118–1123.

    Article  Google Scholar 

  • Charbonneaux, T. G. 1991. Design of sheet dies for minimum residence time distribution: a review. Polym.-Plast. Technol. Eng. 30(7): 665–684.

    Article  Google Scholar 

  • Chung, C. I. and Lohkamp, D. T. 1976. Designing coat-hanger dies by power-law approximation. Modern Plastics. March: 52–55.

    Google Scholar 

  • Cloeren, P. F. 1979. Method for forming multi-layer laminates. US Patent 4,152,387.

    Google Scholar 

  • Cloeren, P. F. 1979. Method for forming multi-layer laminates. US Patent 4,152,387.

    Google Scholar 

  • Cloeren, P. F. 1993. End feed extrusion. US Patent 5,234,649.

    Google Scholar 

  • Erckmann, B. 1988. Shaping tool for an extruder or calibrator for thermoplastic material. US Patent 4,721,447.

    Google Scholar 

  • Han, C. D. and Shetty, R. 1978. Studies on multilayer film coextrusion II.Interfacial instability in flat film coextrusion. Polymer Eng. Sci. 18(3): 180–186.

    Article  CAS  Google Scholar 

  • Hiraki, Y., Tanaka, Y. and Noda, S. 1989. Coating method. US Patent 4,828,779.

    Google Scholar 

  • Huang, J. C. P. and Yu, H. 5.1973. Pressure distributions in porous ducts of arbitrary cross section. J. Fluids Eng. Trans. ASME. 95: 342–348.

    Article  Google Scholar 

  • Iguchi, K., Nitta, S., Wada, H. and Sano, T. 1987. T-die adapted for extrusion molding. US Patent 4,704,083. Kasamatsu, T. 1987. Film-forming T die for low viscosity resin. US Patent 4,708,629.

    Google Scholar 

  • Kim, J. K. and Han, C. D. 1991. Polymer-polymer interdiffusion during coextrusion. Polymer Eng. Sci. 31(4): 258–269.

    Article  CAS  Google Scholar 

  • Klein, I. and Klein, R. 1973. Computer modelling of coat hanger dies may be cheaper for the long run. SPE Journal. 29: 33–37.

    Google Scholar 

  • Lee, K. and Liu, T. 1989. Design and analysis of a dual-cavity coat-hanger die. Polymer Eng. Sci. 29(15): 1066–1075.

    Article  CAS  Google Scholar 

  • Lee, K., Wen, S. and Liu, T. 1990. Vortex formation in a dual-cavity coat-hanger die. Polymer Eng. Sci. 30(19): 1220–1227.

    Article  CAS  Google Scholar 

  • Leonard, W. K. 1985a. Effects of secondary cavities, inertia and gravity on extrusion dies. ANTEC ‘85,pp.144–148.

    Google Scholar 

  • Leonard, W. K. 1985b. Inertia and gravitational effects in extrusion dies for non-Newtonian fluids. Polymer Eng. Sci. 25(9): 570–576.

    Article  CAS  Google Scholar 

  • Lippert, H. G. 1991. Slot die coating for low viscosity fluids. In Coatings Technology Handbook, ed. D. Satas. New York: Marcel Dekker.

    Google Scholar 

  • Liu, T. 1983. Fully developed flow of power law fluids in ducts. Ind. Eng. Chem. Fundam. 23: 183.

    Article  Google Scholar 

  • Liu, T. and Hong, C. 1988. The pressure drop/flow rate equation for non-Newtonian flow in channels or irregular cross-section. Polymer Eng. Sci. 28(23): 1559–1564.

    Article  CAS  Google Scholar 

  • Lowey, R. E., Jr. 1960. Plastic extrusion die. US Patent 2,938,231.

    Google Scholar 

  • Luo, X.-L. and Mitsoulis E. 1990. A numerical study of the effect of elongational viscosity on vortex growth in contraction flows of polyethylene melts. J. Rheology. 34(3): 309–342.

    Article  Google Scholar 

  • Matsubara, Y. 1979. Geometry design of a coat-hanger die with uniform flow rate and residence time across the die width. Polymer Eng. Sci. 19(3): 169–172.

    Article  CAS  Google Scholar 

  • Matsubara, Y. 1980. Residence time distribution of polymer melt in the T-die. Polymer Eng. Sci. 20(3): 212–214.

    Article  CAS  Google Scholar 

  • Matsubara, Y. 1981. Coat hanger die. US Patent 4,285,655.

    Google Scholar 

  • Matsubara, Y. 1983. Residence time distribution of polymer melts in the linearly tapered coat-hanger die. Polymer Eng. Sci. 23(1): 17–19.

    Article  Google Scholar 

  • McKelvey, J. M. and Ito, K. 1971. Uniformity of flow from sheeting dies. Polymer Eng. Sci. 11(3): 258–263.

    Article  CAS  Google Scholar 

  • Michaeli, W. 1992. Extrusion Dies for Plastics and Rubber. New York: Oxford University Press.

    Google Scholar 

  • Middleman, S. 1977. Fundamentals of Polymer Processing.New York: McGraw-Hill.

    Google Scholar 

  • Miller, C. 1972. Predicting non-Newtonian flow behavior in ducts of unusual cross section. Ind. Eng. Chem. Fundam. 11(4): 524–528.

    Article  CAS  Google Scholar 

  • Nelson, N. K., Kistler, S. F. and Olmsted, R. D. 1990. A generalized viscous model for the steady shear rheology of magnetic dispersions. Paper read at 62nd Annual Society of Rheology meeting, 21–25 October 1990, Santa Fe, New Mexico.

    Google Scholar 

  • Nissel, F. R. 1976. Thickness control system for an extrusion die. US Patent 3,940,221.

    Google Scholar 

  • Nordberg III, M. E. and Winter, H..H. 1988. Fully developed multilayer polymer flows in slits and annuli. Polymer Eng. Sci. 28(7): 444–452.

    Article  Google Scholar 

  • Nordberg III, M. E. and Winter, H. H. 1990. A simple model of nonisothermal coextrusion. Polymer Eng. Sci. 30(7): 408–415.

    Article  CAS  Google Scholar 

  • Pearson, J. R. A. 1964. Non-Newtonian flow and die design. Trans. J. Plastics Institute. 32(99): 239–244.

    Google Scholar 

  • Pearson, J. R. A.1985. Mechanics of Polymer Processing. New York: Elsevier Science Publishing Co.

    Google Scholar 

  • Procter, B. 1972. Flow analysis in extrusion dies. SPE Journal. 28: 34–41.

    CAS  Google Scholar 

  • Puissant, S., Vergnes, B Demay, Y. and Agassant, J. F. 1992. A general non-isothermal model for one-dimensional multilayer coextrusion flows. Polymer Eng. Sci. 32(3): 213–220.

    CAS  Google Scholar 

  • Reifenhäuser, H., Beisemann, H., Reitemeyer, P. and Grabowski, R. 1986. Extruder or calibrating die. US Patent 4,594,063.

    Google Scholar 

  • Russel, W. B., Saville, D. A. and Schowalter, W. R. 1989. Colloidal Dispersions. New York: Press Syndicate of the University of Cambridge.

    Book  Google Scholar 

  • Sartor, L. 1990. Slot coating: fluid mechanics and die design. PhD thesis, University of Minnesota.

    Google Scholar 

  • Schrenk, W. J., Bradley, N. L., Alfrey, Jr, T. and Maack, H. 1978. Interfacial flow instability in multilayer coextrusion. Polymer Eng. Sci. 18(8): 620–623.

    Article  CAS  Google Scholar 

  • Schweizer, P. F. 1992. Fluid handling and preparation. In Modern Coating and Drying Technology,eds E. D. Cohen and E. B. Gutoff. New York: VCH Publishers.

    Google Scholar 

  • Secor, R. B. 1995. Viscoelastic effects in die manifold flows. Paper read at 67th Annual Society of Rheology meeting, 8–12 October 1995, Sacremento, CA.

    Google Scholar 

  • Sornberger, G., Vergnes, B. and Agassant, J. F. 1986a. Two directional coextrusion flow of two molten polymers in flat dies. Polymer Eng. Sci. 26(7): 455–461.

    Article  CAS  Google Scholar 

  • Sornberger, G., Vergnes, B. and Agassant, J. F. 1986b. Coextrusion flow of two molten polymers between parallel plates: non-isothermal computation and experimental study. Polymer Eng. Sci. 26(10): 682–689.

    Article  CAS  Google Scholar 

  • Stafford, L. O. 1971. Apparatus for casting multi-layer composite film US Patent 3,583,032.

    Google Scholar 

  • Su, Y. and Khomami, B. 1992. Interfacial stability of multilayer viscoelastic fluids in slit and converging channel die geometries. J. Rheology. 36(2): 357–387.

    Article  CAS  Google Scholar 

  • Tadmor, Z., Broyer, E. and Gutfinger, C. 1974. Flow Analysis Network (FAN) - a method for solving flow problems in polymer processing. Polymer Eng. Sci. 1(9): 660–665.

    Article  Google Scholar 

  • Tadmor, Z. and Gogos, C. G. 1979. Principles of Polymer Processing. New York: John Wiley.

    Google Scholar 

  • Vergnes, B. and Agassant, J. F. 1986. Die flow computations: A method to solve industrial problems in polymer processing. Advances in Polymer Technology. 6(4): 441–455.

    Article  Google Scholar 

  • Vergnes, B., Saillard, P. and Agassant, J. F. 1984. Non-isothermal flow of a molten polymer in a coat-hanger die. Polymer Eng. Sci. 24(12): 980–987.

    Article  Google Scholar 

  • Vlcek, J., Mailvaganam, G. N., Vlachopoulos, J. and Perdikoulias, J. 1990. Computer simulation and experiments of flow distribution in flat sheet dies. Advances in Polymer Technology. 10(4): 309–322.

    Article  CAS  Google Scholar 

  • Vrahopoulou, E. P. 1991. A model for fluid flow in dies. Chem. Eng. Sci. 46(2): 629–636.

    Article  CAS  Google Scholar 

  • Wang, Y. 1991. Extrusion of rubber compounds and highly filled thermoplastics through coathanger dies. Intern. Polymer Processing. 6(4): 311–317.

    CAS  Google Scholar 

  • Whitaker, S. 1981. Introduction to Fluid Mechanics. Malabar, Florida: Robert E. Krieger Publishing Company.

    Google Scholar 

  • White, S. A., Gotsis, A. D. and Baird, D. G. 1987. Review of the entry flow problem: experimental and numerical. J. Non-Newt. Fluid Mech. 24: 121–160.

    Article  CAS  Google Scholar 

  • Wilson, G. M. and Khomami, B. 1992. An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. Part I. Incompatible polymer systems. J. Non-Newt. Fluid Mech. 45: 355–384.

    Article  CAS  Google Scholar 

  • Winter, H. H. 1975. Temperature fields in extruder dies with circular, annular, or slit cross-section. Polymer Eng. Sci. 15(2): 84–89.

    CAS  Google Scholar 

  • Winter, H. H. and Fritz, H. G. 1986. Design of dies for the extrusion of sheets and annular parisons: the distribution problem. Polymer Eng. Sci. 26(8): 543–553.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Secor, R.B. (1997). Analysis and Design of Internal Coating Die Cavities. In: Kistler, S.F., Schweizer, P.M. (eds) Liquid Film Coating. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5342-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5342-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6246-6

  • Online ISBN: 978-94-011-5342-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics