Endotoxin, Monophosphoryl Lipid A and Delayed Cardioprotection

  • G. J. Gross
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 207)


In 1989, Brown and colleagues [1] demonstrated that pretreatment of rats with a low dose of endotoxin (lipopolysaccharide, LPS) 24 hours prior to heart isolation and perfusion in the Langendorff mode resulted in an enhanced post-ischaemic recovery of myocardial function (left ventricular developed pressure, + dP/dt) and an increase in catalase activity. Hearts isolated from rats which were pretreated with LPS for only 1 hour did not have an increased catalase activity or functional protection from ischaemia-reperfusion injury. These results suggested that the delayed cardioprotection produced by LPS was the result of enhanced antioxidant enzyme activity, particularly catalase.


Infarct Size KATP Channel Ischemic Precondition Cardioprotective Effect Rabbit Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown JM., Gross MA, Terada LS et al. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Nat Acad Sci USA 86: 2516–2520. 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Rowland RT, Meng X, Cleveland JC Jr, Meldrum DR, Harken AH, Brown JM LPS-induced delayed myocardial adaptation enhances acute preconditioning to optimize postischemic cardiac function. Am J Physiol. 272: H2708–H2715, 1997.PubMedGoogle Scholar
  3. 3.
    Meng X, Ao L, Brown JM et al. LPS induces late cardiac functional protection against ischemia independent of cardiac and circulating TNF-α. Am J Physiol. 273: H1894–H1902, 1997.PubMedGoogle Scholar
  4. 4.
    Qureshi N, Takayama K, Ribi, E. Purification and structural determination of nontoxic lipid A obtained from lipopolysaccharide of salmonella typhimurium. J Biol Chem. 257: 11808–11815, 1982.PubMedGoogle Scholar
  5. 5.
    Ribi E. Beneficial modification of the endotoxin molecule. J.Biol Resp Modif 3: 1–9, 1984.Google Scholar
  6. 6.
    Yao Z, Auchampach JA, Pieper GM, Gross GJ. Cardioprotective effect of monophosphoryl lipid A, a novel endotoxin analogue, in dogs. Cardiovasc Res 27: 832–838, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Yao Z, Rasmussen JR, Hirt JL, Mei DA, Pieper GM, Gross GJ. Effects of monophosphoryl lipid A on myocardial ischemia/reperfusion injury and vascular endothelial and smooth muscle function in dogs. J Cardiovasc Pharmacol 22: 653–663, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Elliott GT, Comerford ML, Smith JR, Zhao, L. Myocardial ischemia/reperfusion protection using monophosphoryl lipid A is abrogated by the ATP-sensitive potassium channel blocker, glibenclamide. Cardiovasc Res 32: 1071–1080, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Przyklenk K, Zhao L, Kloner RA, Elliott GT. Cardioprotection with ischemic preconditioning and MLA: role of adenosine-regulating enzymes? Am J Physiol 271: H1004–H1014, 1996.PubMedGoogle Scholar
  10. 10.
    Baxter GF, Goodwin RW, Wright MJ, Kerac M, Heads RJ, Yellon DM. Myocardial protection after monophosphoryl lipid A: studies of delayed anti-ischaemic properties in rabbit hearts. Br J Pharmacol 117: 1685–1692, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshida K, Maajeh MM, Shipley JB et al. Monophosphoryl lipid A induces pharmacologic preconditioning in rabbit hearts without concomitant expression of 70-kDa heat shock protein. Mol Cell Biochem 159: 73–80, 1996.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber P, Smart M, Comerford M, Smith J, Zhao L, Elliott G. Monophosphoryl lipid A mimics both first and second window of ischemic preconditioning and preserves myocardial sarcoplasmic reticular calcium pump. J. Mol. Cell. Cardiol. 29: A233, 1997 (abstract).Google Scholar
  13. 13.
    Yellon DM, Baxter GF. A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection. J Mol Cell Cardiol 27: 1023–1034, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Baxter GF, Goma FM, Yellon DM. Characterization of the infarct-limiting effect of delayed preconditioning: time course and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 92: 159–167, 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Mei DA, Elliott GT, Gross GJ. KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A. Am J Physiol 271: H2723–H2729, 1996.Google Scholar
  16. 16.
    Eising GP, Mao L, Schmid-Schonbein GW, Engler RL, Ross J. Effects of induced tolerance to bacterial lipopolysaccharide on myocardial infarct size in rats. Cardiovasc Res 31: 73–81. 1996.PubMedGoogle Scholar
  17. 17.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66: 1146–1149, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson DW, Brown JM, Banerjee A et al. Pretreatment with a nontoxic derivative of endotoxin induces functional protection against cardiac ischemia/reperfusion injury. Surgery 110: 365–369, 1991.PubMedGoogle Scholar
  19. 19.
    Zhao L, Kirsch CC, Hagen SR, Elliott GT. Preservation of global cardiac function in the rabbit following protracted ischemia/reperfusion using monophosphoryl lipid A (MLA). J Mol. Cell Cardiol 28: 197–208, 1996.PubMedCrossRefGoogle Scholar
  20. 20.
    Yao Z, Elliot GT, Gross GJ. Monophosphoryl lipid A preserves myocardial contractile function following multiple, brief periods of coronary occlusion in dogs. Pharmacology 51: 152–159, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Jeremy RW, Becker LC. Neutrophil depletion does not prevent myocardial dysfunction after brief coronary occlusion. J Am Coll Cardiol 13: 1155–1163, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91:1872–1885, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao L, Weber PA, Smith JR, Comerford ML, Elliott GT. Role of inducible nitric oxide synthase in pharmacological “preconditioning” with monophosphoryl lipid A. J Mol Cell Cardiol 29: 1567–1576, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Pieper GM, Clarke GA, Gross GJ. Stimulatory and inhibitory action of nitric oxide donor agents vs. nitrovasodilators on reactive oxygen production by isolated polymorphonuclear leukocytes. J Pharmacol Exp Ther 269: 451–456, 1994.PubMedGoogle Scholar
  25. 25.
    Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. A heat shock protein 70 transgene results in myocardial protection. J Clin Invest 95: 1446–1456, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Zingarelli B, Halushka PV, Caputi AP, Cook JA. Increased nitric oxide synthase during the development of endotoxin tolerance. Shock 3: 102–108, 1995.PubMedGoogle Scholar
  27. 27.
    Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ.Res 1992; 70: 223–233, 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Bernardo NL, D’ Angelo M, Desai PV, Levasseur JE, Kukreja RC. ATP-sensitive potassium channel is involved in the second window of ischemic preconditioning in rabbit. J Mol Cell Cardiol 29: 293, 1997.CrossRefGoogle Scholar
  29. 29.
    Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 90: 2993–3000, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim E, Han J, Ho W, Earm YE. Modulation of ATP-sensitive K+ channels in rabbit ventricular myocytes by adenosine Al receptor activation. Am J Physiol 272: H325–H333, 1997.PubMedGoogle Scholar
  31. 31.
    Shinbo A, Iijima T. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea pig ventricular cells. Br J Pharmacol 120: 1568–1574, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Kitakaze M, Hori M, Morioka T et al. Infarct size-limiting effect of ischemic preconditioning is blunted by inhibition of 5’-nucleotidase activity and attenuation of adenosine release. Circulation 89: 1237–1246, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Astiz ME, Rackow EC, Still JG. Pretreatment of normal humans with monophosphoryl lipid A induces tolerance to endotoxin: a prospective, double-blind, randomized, controlled trial. Crit Care Med 23: 9–17, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    Mei DA, Elliott GT, Gross GJ. Comparative effects of early ischemic preconditioning (PC) and late PC induced by monophosphoryl lipid A upon myocardial infarct size and interstitial purine metabolism in dogs. Circulation 94: 1072, 1996 (abstract).Google Scholar
  35. 35.
    Yao Z, Mizumura T, Mei DA, Gross GJ. KATP channels and memory of ischemic preconditioning in dogs: synergism between adenosine and KATP channels. Am J Physiol 272: H334–H342, 1997.PubMedGoogle Scholar
  36. 36.
    Gustafson GL, Rhodes MJ. A rationale for the prophylactic use of monophosphoryl lipid A in sepsis and septic shock. Biochem Biophys Res Commun 182: 269–275, 1992.PubMedCrossRefGoogle Scholar
  37. 37.
    Cameron JS, Kibler KKA, Berry H, Barron DN, Sodder VH. Nitric oxide activates ATP-sensitive potassium channels in hypertrophied ventricular myocytes. FASEB J 10: A65, 1996 (abstract).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • G. J. Gross

There are no affiliations available

Personalised recommendations