Advertisement

Delayed Preconditioning Against Ventricular Arrhythmias

  • A. Vegh
  • J. R. Parratt
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 207)

Abstract

In 1989, not long after the first description of the preconditioning phenomenon by Murry et al. [1], demonstrating a protective effect against myocardial ischaemic damage (infarct size limitation), we explored the possibility that preconditioning could also protect the heart against those severe ventricular arrhythmias which arise soon after the onset of myocardial ischaemia. We were particularly interested to assess the extent to which the coronary endothelium determines arrhythmia severity following coronary artery occlusion and whether this plays a role in ischaemic preconditioning. In this chapter, we describe the protection against ventricular arrhythmias afforded by preconditioning, with particular emphasis on the delayed form of protection.

Keywords

Nitric Oxide Ventricular Tachycardia Ventricular Arrhythmia Ventricular Fibrillation Coronary Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Vegh A, Parratt JR. Ischaemic preconditioning markedly reduces the severity of ischaemia and reperfusion-induced arrhythmias; role of endogenous myocardial protective substances. In: Wainwright CL & Parratt JR (eds), Myocardial Preconditioning. Springer, Berlin, 1996: 35–60.Google Scholar
  3. 3.
    Vegh A, Szekeres L, Udvary E. Effect of blood supply to the normal non-infarcted myocardium on the incidence and severity of early post-occlusion arrhythmias in dogs. Basic Res Cardiol 1987; 82: 159–171.PubMedCrossRefGoogle Scholar
  4. 4.
    Vegh A, Komori S, Szekeres L, Parratt JR. Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats. Cardiovasc Res 1992; 26: 487–495.PubMedCrossRefGoogle Scholar
  5. 5.
    Russell DC, Lawrie JS, Riemersma RA, Oliver MF. Mechanism of phase 1a and 1b arrhythmia during acute myocardial ischemia in the dog. Am J Cardiol 1984; 53: 307–312.PubMedCrossRefGoogle Scholar
  6. 6.
    Kane KA, Parratt JR, Williams FM. An investigation into the characteristics of reperfusion-induced arrhythmias in the anaesthetised rat and their susceptibility to drugs. Br J Pharmacol 1984; 82: 349–357.PubMedCrossRefGoogle Scholar
  7. 7.
    Parratt JR, Wainwright CL. Reperfusion arrhythmias — an update. Update in Intensive Care and Emergency Medicine 1988; 5: 293–302.CrossRefGoogle Scholar
  8. 8.
    Haider AW, Tousolio D, Davies GJ. Arrhythmic preconditioning in patients with variant angina. Heart 1996; 75: (Suppl 1), P24 (abstract).Google Scholar
  9. 9.
    Tamura K, Tsuji H, Nishiue T, Tokunaga S, Iwasaka T. Association of preceding angina with in-hospital life-threatening ventricular tachyarrhythmias and late potentials in patients with a first acute myocardial infarction. Am Heart J 1997; 133: 297–301.PubMedCrossRefGoogle Scholar
  10. 10.
    Airaksinen KEJ, Huikuri HV. Antiarrhythmic effect of repeated coronary artery occlusion during balloon angioplasty. J Am Coll Cardiol 1997; 29: 1035–1038.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuzuya T, Hoshida S, Yamashita N et al. Delayed effects of sublethal ischemia on the aquisition of tolerance to ischemia. Circ Res 1993; 72: 1293–1299.PubMedCrossRefGoogle Scholar
  12. 12.
    Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264–1272.PubMedCrossRefGoogle Scholar
  13. 13.
    Yellon DM, Baxter GF. A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 1995; 27: 1023–1034.PubMedCrossRefGoogle Scholar
  14. 14.
    Vegh A, Papp JGy, Kaszala K, Parratt JR. Cardiac pacing in anaesthetised dogs preconditions the heart against arrhythmias when ischaemia is induced 24 h later. J Physiol 1994; 480: 89P (abstract).Google Scholar
  15. 15.
    Vegh A, Papp JGy, Szekeres L, Kaszala K, Parratt JR. Antiarrhythmic effects of ischaemic preconditioning during the “second window of protection”. J Mol Cell Cardiol 1994; 26: A346 (abstract).Google Scholar
  16. 16.
    Vegh A, Szekeres L, Parratt JR. Transient ischaemia induced by rapid cardiac pacing results in myocardial preconditioning. Cardiovasc Res 1991; 25: 1051–1053.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaszala K, Vegh A, Papp JGy, Parratt JR. Time-course of the protection against ischaemia and reperfusion-induced ventricular arrhythmias resulting from brief periods of cardiac pacing. J Mol Cell Cardiol, 1996; 28: 2085–2095.PubMedCrossRefGoogle Scholar
  18. 18.
    Szekeres L, Papp JGy, Szilvassy Z, Udvary E, Vegh A. Moderate stress by cardiac pacing may induce both short term and long term cardioprotection. Cardiovasc Res 1993; 27: 593–596.PubMedCrossRefGoogle Scholar
  19. 19.
    Sun JZ, Tang XL, Knowlton AA, Park SW, Oiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 1995; 95: 388–403.PubMedCrossRefGoogle Scholar
  20. 20.
    Tang XL, Qiu Y, Park SW, Sun JZ, Kalya A, Bolli R. Time course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 1996; 79: 424–434.PubMedCrossRefGoogle Scholar
  21. 21.
    Baxter GF, Goma FM, Yellon DM. Duration of the’ second window of protection’ following ischaemic preconditioning in the rabbit. J Mol Cell Cardiol 1995; 27: A162 (abstract).Google Scholar
  22. 22.
    Baxter GF, Goma FM, Yellon DM. Temporal characterisation of the “second window of protection”: duration of the anti-infarct effect after ischaemic preconditioning. Circulation 1995; 92 (Suppl I): I–389 (abstract).Google Scholar
  23. 23.
    Qiu Y, Tang XL, Park SW, Sun JZ, Kalya A, Bolli R. The early and late phases of ischemic preconditioning. A comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40-minute coronary occlusion. Circ Res 1997; 80: 730–742.PubMedCrossRefGoogle Scholar
  24. 24.
    Kis A, Vegh A, Papp JGy, Parratt JR. Repeated pacing widens the time window of delayed protection against ventricular arrhythmias in dogs. J Mol Cell Cardiol 1996; 28: A59 (abstract).Google Scholar
  25. 25.
    Kis A, Vegh A, Papp JGy, Parratt JR. Repeated pacing markedly prolongs the delayed antiarrhythmic protection in anaesthetised dogs. J Mol Cell Cardiol 1997; 29: A122 (abstract).Google Scholar
  26. 26.
    Parratt JR, Vegh A. Delayed protection against ventricular arrhythmias by cardiac pacing. Heart 1997; 78: 423–425.PubMedGoogle Scholar
  27. 27.
    Hull SS, Vanoli E, Adamson PB, Verrier RL, Foreman RD, Schwarz PJ. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation 1994; 89: 548–552.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao G, Zhang X, Xu X, Ochoa M, Hintze TH. Short-term exercise training enhances reflex cholinergic nitric oxide-dependent coronary vasodilation in conscious dogs. Circ Res 1997; 80: 868–876.PubMedCrossRefGoogle Scholar
  29. 29.
    Willich SN, Lewis M, Lowel H, Arntz H-R, Schubert F, Schroder R. Physical exertion as a trigger of acute myocardial infarction. N Engl J Med 1993; 329: 1684–1690.PubMedCrossRefGoogle Scholar
  30. 30.
    Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. N Engl J Med 1993; 329: 1667–1683.CrossRefGoogle Scholar
  31. 31.
    Tofler GH, Mittleman MA, Muller JE. Physical activity and the triggering of myocardial infarction: the case for regular exertion. Heart 1996;75: 323–325.PubMedCrossRefGoogle Scholar
  32. 32.
    Szekeres L, Szilvassy Z, Udvary E, Vegh A. 7-oxo-PGI2-induced late appearing and long-lasting electrophysiological changes in the heart in situ of the rabbit, guinea pig, dog and cat. J Mol Cell Cardiol 1989; 21: 545–554.PubMedCrossRefGoogle Scholar
  33. 33.
    Szekeres L. On the mechanism and possible therapeutic application of delayed cardiac adaptation to stress. Can J Cardiol 1996; 13: 177–185.Google Scholar
  34. 34.
    Parratt JR, Szekeres L. Delayed protection of the heart against ischaemia. Trends Pharmacol Sci 1995; 16: 351–355.PubMedCrossRefGoogle Scholar
  35. 35.
    Parratt JR. Myocardial and circulatory effects of E. coli endotoxin: modification of responses to catecholamines. Br J Pharmacol 1973; 47: 12–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Rowland RT, Meng X, Cleveland JC, Meldrum DR, Harken AH, Brown JM. LPS-induced delayed myocardial adaptation enhances acute preconditioning to optimize postischemic cardiac function. Am J Physiol 1997; 272: H2708–H2715.PubMedGoogle Scholar
  37. 37.
    Wu S, Furman BL, Parratt JR. Delayed protection against ischaemia-induced ventricular arrhythmias and infarct size limitation by the prior administration of Escerichia coli endotoxin. Br J Pharmacol 1996; 118: 2157–2163.CrossRefGoogle Scholar
  38. 38.
    Brown JM, Grosso MA, Terada LS et al. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury in isolated rat heart. Proc Natl Acad Sci USA 1989; 86: 2526–2530.Google Scholar
  39. McDonough KH, Causey KM. Effects of sepsis on recovery of the heart from 50 min ischemia. Shock 1994; 1: 432–437.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu S, Furman BL, Parratt JR. Attenuation by dexamethasone of endotoxin protection against ischaemia-induced ventricular arrhythmias. Br J Pharmacol 1994; 113: 1083–1084.CrossRefGoogle Scholar
  41. 41.
    Yao Z, Rasmussen JL, Hirt JL, Mei DA, Pieper GM, Gross GJ. Effects of monophosphoryl lipid A on myocardial ischemia/reperfusion injury in dogs. J Cardiovasc Pharmacol 1993; 22: 653–663.PubMedCrossRefGoogle Scholar
  42. 42.
    Yao Z, Auchampach JA, Pieper GM, Gross GJ. Cardioprotective effects of monophosphoryl lipid A, a novel endotoxin analogue, in the dog. Cardiovasc Res 1993; 27: 832–838.PubMedCrossRefGoogle Scholar
  43. 43.
    Baxter GF, Goodwin RW, Wright MJ, Kerac M, Heads RJ, Yellon DM. Myocardial protection after monophosphoryl lipid A: studies of delayed anti-ischaemic properties in rabbit heart. Br J Pharmacol 1996; 117: 1685–1692.PubMedCrossRefGoogle Scholar
  44. 44.
    Elliot GT, Comerford ML, Smith JR, Zhao L. Myocardial ischemia/reperfusion protection using monophosphoryl lipid A is abrogated by the ATP-sensitive potassium channel blocker, glibenclamide. Cardiovasc Res 1996; 32: 1071–1080.CrossRefGoogle Scholar
  45. 45.
    Wu S, Furman BL, Parratt JR. Monophosphoryl lipid A reduces arrhythmia severity and infarct size in a rat model of ischaemia. Eur J Pharmacol 1998; 345: 285–287.CrossRefGoogle Scholar
  46. 46.
    Vegh A, Papp JGy, Elliott GT, Parratt JR. Pretreatment with monophosphoryl lipid A (MPL-C) reduces ischaemia-reperfusioninduced arrhythmias in dogs. J Mol Cell Cardiol 1996; 28: A56 (abstract).Google Scholar
  47. 47.
    Zhao L, Weber PA, Smith JR, Comerford ML, Elliott GT. Role of inducible nitric oxide synthase in pharmacological “preconditioning” with monophosphoryl lipid A. J Mol Cell Cardiol 1997; 29: 1567–1576.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein B, Frank P, Schmitz W, Scholz H, Thones M. Endotoxin and cytokines induce direct cardioprotective effects in mammalian cardiomyocytes via induction of nitric oxide synthase. J Mol Cell Cardiol 1996; 28: 1631–1639.PubMedCrossRefGoogle Scholar
  49. 49.
    Mei DA, Elliott GT, Gross GJ. KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A. Am J Physiol 1996; 271: H2723–H2729.PubMedGoogle Scholar
  50. 50.
    Vegh A, Papp JGy, Szekeres L, Parratt JR. Are ATP sensitive potassium channels involved in the pronounced antiarrhythmic effects of preconditioning? Cardiovasc Res 1992; 27: 638-543.Google Scholar
  51. 51.
    Pzyklenk K, Zhao L, Kloner RA, Elliott GT. Cardioprotection with ischemic preconditioning and MLA: role of adenosine-regulating enzymes? Am J Physiol 1996; 271:H1004–H1014.Google Scholar
  52. 52.
    Przyklenk K, Hata K, Zhao L, Kloner RA, Elliott GT. Disparate effects of preconditioning and MLA on 5’-NT and adenosine levels during coronary occlusion. Am J Physiol 1997; 273: H945–H951.PubMedGoogle Scholar
  53. 53.
    Vegh A, Parratt JR. Delayed ischaemic peconditioning induced by drugs and by cardiac pacing. In.Wainwright CL, Parratt JR (eds). Myocardial Preconditioning. Springer, Berlin, 1996; 251–260.Google Scholar
  54. 54.
    Ravingerova T. Mimicking preconditioning with catecholamines. In.Wainwright CL, Parratt JR (eds). Myocardial Preconditioning. Springer, Berlin, 1996; 167–180.Google Scholar
  55. 55.
    Ravingerova T, Barancik M, Pancza D et al. Contribution to the factors involved in the protective effect of ischemic preconditioning. The role of catecholamines and protein kinase C. Ann NY Acad Sci 1996; 793: 43–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Vegh A, Papp JGy, Parratt JR. Intracoronary noradrenaline suppresses ischaemia-induced ventricular arrhythmias in anaesthetised dogs. J Mol Cell Cardiol 1994; 26: LXXXVII (abstract).Google Scholar
  57. 57.
    Ravingerova T, Song W, Ziegelhoffer A, Parratt J. Delayed antiarrhythmic effect of pretreatment with norepinephrine in rats; the role of Na/KATP-ase. J Mol Cell Cardiol 1995; 27: A162 (abstract).CrossRefGoogle Scholar
  58. 58.
    Locke-Winter CR, Winter CB, Nelson DW, Banerjee A. cAMP stimulation facilitates preconditioning against ischemia-reperfusion through norepinephrine and alpha1 mechanisms. Circulation, 1991; 84: (Suppl 2) 11–433 (abstract).Google Scholar
  59. 59.
    Banerjee A, Locke-Winter C, Rogers KB et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an α1-adrenergic mechanism. Circ Res 1993; 73: 656–670.PubMedCrossRefGoogle Scholar
  60. 60.
    Weselcough EO, Baird AJ, Sleph PG, Dzwonzyk S, Murray HN, Grover GJ. Endogenous catecholamines are not necessary for ischaemic preconditioning in the isolated perfused rat heart. Cardiovasc Res 1995; 29: 126–132.Google Scholar
  61. 61.
    Lawson CS, Hearse DJ. Anti-arrhythmic protection by ischaemic preconditioning in isolated rat hearts is not due to depletion of endogenous catecholamines. Cardiovasc Res 1996; 31: 655–662.PubMedGoogle Scholar
  62. 62.
    Vegh A, Papp JGy, Semeraro C, Fatehi-Hassanabad Z, Parratt JR. The dopamine receptor agonist Z1046 reduces ischaemia severity in a canine model of coronary artery occlusion. Eur J Pharmacol 1998; 344: 203–213.PubMedCrossRefGoogle Scholar
  63. 63.
    Vegh A, Silely M, Papp JGy et al. The dopamine agonist Z1046 suppresses ischaemia-induced ventricular arrhythmias in anaesthetised dogs. J Mol Cell Cardiol 1997; 29: A122 (abstract).Google Scholar
  64. 64.
    Vegh A, Fatehi-Hassanabad Z, Papp JGy, Semeraro C, Marchini F, Parratt JR. The antiarrhythmic effects of Z1046 are attenuated by domperidone; evidence for the involvement of dopamine DA2 receptors. J Mol Cell Cardiol 1997; 29: A123 (abstract).Google Scholar
  65. 65.
    Baxter GF, Yellon DM. The “second window of protection” associated with ischaemic preconditioning. In: Marber MS, Yellon DM (eds). Ischaemia, Preconditioning and Adaptation. Oxford: Bios Scientific Publishers, 1996: 113–128.Google Scholar
  66. 66.
    Currie RW, Karmazyn M, Kloc M, Mailer K. Heat shock response is associated with enhanced post-ischemic ventricular recovery. Circ Res 1988; 63: 543–549.PubMedCrossRefGoogle Scholar
  67. 67.
    Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24: 895–907.PubMedCrossRefGoogle Scholar
  68. 68.
    Nayeem MA, Hess ML, Qian YZ, Loesser KE, Kukreja RC. Delayed preconditioning of cultured adult rat cardiac myocytes: role of 70-and 90-kDa heat stress proteins. Am J Physiol 1997; 273: H861–H868.PubMedGoogle Scholar
  69. 69.
    Vegh A, Papp JGy, Parratt JR. Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br J Pharmacol 1994; 113: 1081–1082.PubMedCrossRefGoogle Scholar
  70. 70.
    Bolli R, Bhatti ZA, Tang X-L, Qiu Y, Zhang Q, Guo Y, Jadoon AK. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res 1997; 81: 42–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Kim SJ, Ghaleh B, Kudej RK, Huang CH, Hintze TH, Vatner SF. Delayed enhanced nitric oxide-mediated coronary vasodilation following brief ischemia and prolonged reperfusion in conscious dogs. Circ Res 1997; 81: 53–59.PubMedCrossRefGoogle Scholar
  72. 72.
    Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N Tada M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 1993; 264: H33–H39.PubMedGoogle Scholar
  73. 73.
    Zhou X, Zhai X, Ashraf M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 1996; 93: 1177–1184.PubMedCrossRefGoogle Scholar
  74. 74.
    Baxter GF, Heads RJ, Yellon DM. Oxidative stress and the second window of protection after preconditioning. Circulation 1996; 94: 2992–2993.PubMedGoogle Scholar
  75. 75.
    Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994; 90: 2993–3000.PubMedCrossRefGoogle Scholar
  76. 76.
    Baxter GF, Zaman MJS, Kerac M, Yellon DM. Protection against global ischemia in the rabbit isolated heart 24 hours after transient adenosine A1 receptor activation. Cardiovasc Drugs Ther 1997; 11: 83–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Baxter GF, Yellon DM. Time course of delayed myocardial protection after transient adenosine A1-receptor activation in the rabbit. J Cardiovasc Pharmacol 1997; 29: 631–638.PubMedCrossRefGoogle Scholar
  78. 78.
    Imagawa J, Baxter GF, Yellon DM. Genistein, a tyrosine kinase inhibitor, blocks the “second window of protection” 48 h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol 1997; 29: 1885–1893.PubMedCrossRefGoogle Scholar
  79. 79.
    Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sub-lethal ischaemia in rabbit myocardium. Br J Pharmacol 1995; 115: 222–224.PubMedCrossRefGoogle Scholar
  80. 80.
    Fatehi-Hassanabad Z, Parratt JR. Genistein, an inhibitor of tyrosine kinase, prevents the antiarrhythmic effects of preconditioning. Eur J Pharmacol 1998; 338: 67–70.CrossRefGoogle Scholar
  81. 81.
    Parratt JR, Vegh A. Coronary vascular endothelium, preconditioning and arrhythmogenesis. In: Lewis MJ, Shah AM (eds). Endothelial Modulation of Cardiac function. Reading, Harwood Academic Publishers, 1997; 237–254.Google Scholar
  82. 82.
    Parratt JR, Vegh A, Kaszala K, Papp JGy. Suppression of life-threatening ventricular arrhythmias by brief periods of ischaemia and by cardiac pacing with particular reference to delayed myocardial protection. In: Marber MS, Yellon DM (eds). Ischaemia, Preconditioning and Adaptation. Oxford: Bios, 1996: 85–111.Google Scholar
  83. 83.
    Misko TP, Moore WM, Kasten TP, Nichols GA, Corbett JA, Tilton RG, Mc Daniel ML, Williamson JR, Currie MG. Selective inhibition of the inducible nitric oxide by aminoguanidine. Eur J Pharmacol 1993; 233: 119–125.PubMedCrossRefGoogle Scholar
  84. 84.
    Kis A, Vegh A, Papp JGy, Parratt JR. Pacing-induced delayed antiarrhythmic protection is attenuated by aminoguanidine in dogs. J Mol Cell Cardiol 1998; in press.Google Scholar
  85. 85.
    Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–353.PubMedCrossRefGoogle Scholar
  86. 86.
    Egashira K, Katsuda Y, Mohri M, Kuga T, Tagawa T, Kubota T, Hirakawa Y, Takeshita A. Role of endothelium-derived nitric oxide in coronary vasodilatation induced by pacing tachycardia in humans. Circ Res 1996; 79: 331–335.PubMedCrossRefGoogle Scholar
  87. 87.
    Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, Hintze TH. Function and production of nitric oxide in the coronary circulation of conscious dogs during exercise. Circ Res 1996; 79: 840–848.PubMedCrossRefGoogle Scholar
  88. 88.
    Quyyumi AA, Dakak N, Andrews NP, Gillian DM, Panza JA, Canon RO. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995; 92: 320–326.PubMedCrossRefGoogle Scholar
  89. 89.
    Szekeres L, Szilvassy Z, Ferdinandy P, Nagy I, Karcsu S, Csati S. Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol, 1997; 29: 1977–1983.PubMedCrossRefGoogle Scholar
  90. 90.
    Vegh A, Papp JGy, Parratt JR. Attenuation of the antiarrhythmic effects of ischaemic preconditioning by blockade of bradykinin B2 receptors. Br J Pharmacol 1994; 113: 1167–1172.PubMedCrossRefGoogle Scholar
  91. 91.
    Kaszala K, Vegh A, Papp JGy, Parratt JR. Modification by bradykinin B2 receptor blockade of protection by pacing against ischaemia-induced arrhythmias. Eur J Pharmacol 1997; 308: 51–60.CrossRefGoogle Scholar
  92. 92.
    Vegh A, Kaszala K, Papp JGy, Parratt JR. Delayed myocardial protection by pacing-induced preconditioning: a possible role for bradykinin. Br J Pharmacol 1995; 116: 288P (abstract).Google Scholar
  93. 93.
    Parratt JR, Vegh A, Zeitlin J et al. Bradykinin and endothelial-cardiac myocyte interactions in ischemic preconditioning. Am J Cardiol 1997; 80(3A): 124A–131A.PubMedCrossRefGoogle Scholar
  94. 94.
    Lewis M, Shah A (eds). Endothelial Modulation of Cardiac function. Reading: Harwood Academic Publishers. 1997.Google Scholar
  95. 95.
    Fatehi-Hassanabad Z, Furman BL, Parratt JR. Endothelium and ischaemic preconditioning in rat isolated perfused hearts. J Physiol 1996; 494: 112P–113P (abstract).Google Scholar
  96. 96.
    Wilson S, Song W, Kaszala K et al. Delayed cardioprotection is associated with the subcellular relocalisation of ventricular protein kinase C, but not p42/44MAPK. Mol Cell Biochem 1996; 160/161: 225–230.CrossRefGoogle Scholar
  97. 97.
    Fleming I, Fisslthaler B, Busse R. Calcium signalling in endothelial cells involve activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res 1995; 76: 522–529.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang X, Xu X, Fortia PR, Nasiletti A, Hintze TH. Neutral endopeptidase (NEP) and angiotensin converting enzyme (ACE) modulate nitric oxide (NO) via local kinin formation production from canine coronary micro vessels. Circulation 1996; 94: (suppl), 349.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. Vegh
  • J. R. Parratt

There are no affiliations available

Personalised recommendations