Skip to main content

Removal of Arsenical By-Products from Chemical Warfare Destruction Effluents

  • Chapter
  • 106 Accesses

Part of the book series: NATO Science Series ((ASDT,volume 22))

Abstract

Within the context of the chemical warfare destruction (April, 29th 1997 convention), the removal of arsenic, which is highly toxic, from the lewisite hydrolysis effluents has been studied. A process in two steps is presented, which is compatible with industrial and economical constraints.

An efficient way to eliminate the major part of arsenic consists in precipitating it into an insoluble form (calcium arsenate, ferric arsenate or arsenite, etc...). Indeed, the elimination of arsenite and arsenate ions at optimal pH (pH 9 for AsIII and 4.5 for AsV) during the precipitation of ferric hydroxide yields very good elimination rates (> 99.9%). A molar ratio Fe(III)/As(III or V) as low as 1 is sufficient to get an elimination rate higher than 99%. In addition, this method allows to obtain a good confining of arsenic in the precipitate; for an addition of iron(III) in a molar ratio Fe(III)/As(III or V) equal to 1, the molar ratio As/Fe into the precipitate is also equal to 1. In this way the solid waste volume is minimized.

However, the residual concentration of arsenic is unfortunately greater than the arsenic’s maximum contaminant level (M.C.L.). For instance, this one reaches (10.8 ± 0.2) ppm for AsIII at pH 9 and (1.4 ± 0.1) ppm for AsV at pH 4.5. In both cases, iron(III) is added so that the molar ratio Fe(III)/As(III or V) is equal to 1.5. A second step is therefore necessary.

After the batch treatment, the arsenite or arsenate traces can be eliminated by selective adsorption on iron(III) hydroxide precipitated within the pores of a macroporous cation-exchange resin; with a 13 cm × 1 cm i.d column (bed volume equal to 10 ml), an effluent volume equal to 2.8 liters, where the arsenic content is lower than the maximal permissible concentration, is obtained. An extrapolation from these results shows a resin bed volume of 3.6 liters (for instance, a 72 cm × 8 cm i.d. column) would be required to decrease the residual arsenic content of 1 m3 of effluent from 10 to 0.1 ppm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ministerial order of 18 February 1994, Storage of special industrial wastes, J. O., 1994, 6117–6124.

    Google Scholar 

  2. Kartinen E.O. Jr, Martin C.J. (1995) An overview of arsenic removal processes, Desalination, 103 (1–2), 79–88.

    Article  CAS  Google Scholar 

  3. Hering J.G., Chen P.Y., Wilkie J.A., Elimelech M., Liang S. (1996) Arsenic removal by ferric chloride, J Am Water Works Assoc., 88 (4), 155–67.

    CAS  Google Scholar 

  4. Story L.G., Anderson E. (1924) The action of arsenic trioxide in water solution on certain metallic hydroxides, J Am Chem Soc,, 46 (1), 533–538.

    Article  CAS  Google Scholar 

  5. Robins R.G. (1981) The solubility of metal arsenates, Metallurgical Transactions B, 12B, 103.

    CAS  Google Scholar 

  6. Ringbom A. (1967) Les complexes en chimie analytique, Dunod, Paris.

    Google Scholar 

  7. Chariot G. (1967, 1983) Les réactions chimiques en solution aqueuse, Masson, Paris.

    Google Scholar 

  8. Dutrizac J.E., Jambor J.L. (1988) The synthesis of cristalline scorodite FeAs04–2H20, Hydrometallurgy, 19, 377–384.

    Article  CAS  Google Scholar 

  9. Krause E., Ettel V.A. (1989) Solubilities and stabilities of ferrie arsenate compounds, Hydrometallurgy, 22,311–337.

    Article  CAS  Google Scholar 

  10. Demopoulos G.P., Droppert DJ., Van Weert G. (1995) Precipitation of crystalline scorodite (FeAs04.2H20) from chloride solutions, Hydrometallurgy, 38,245–261.

    Article  CAS  Google Scholar 

  11. Papassiopi N., Vircikova E., Nenov V., Kontopoulos A., Molnar L. (1996) Removal and fixation of arsenic in the form of ferrie arsenates. Three parallel experimental studies, Hydrometallurgy, 41, 243–253.

    Article  CAS  Google Scholar 

  12. Nenov V.V., Dimitrova N., Dobrevski I., Rands D.G. (1992) Effective precipitation of arsenic from aqueous solution by iron(III) sulfate, Acta Hydrochim Hydrobiol, 20 (1), 14–17.

    CAS  Google Scholar 

  13. Vircikova E., Molnar L., Lech P., Reitznerova E. (1995) Solubilities of amorphous Fe-As precipitates, Hydrometallurgy, 38,111–123.

    Article  CAS  Google Scholar 

  14. Nishimura T., Wang Q., Umetsu Y. Removal of arsenic from process liquors by oxidation of iron(II), arsenic(III) and sulfur(IV) with oxygen, 535–548.

    Google Scholar 

  15. Dutrizac J.E., Harris G.B. (1996) Iron control and disposal, Proceedings Of The Second International Symposium On Iron Control In Hydrometallurgy, Ottawa, Canada, October 20–23.

    Google Scholar 

  16. Waychunas G.A, Rea B.A., Fuller C.C., Davis J.A. (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate, Geochim Cosmochim Acta., 57 (10), 2251–69.

    Article  CAS  Google Scholar 

  17. Robins R.G., Wong P.L.M., Nishimura T., Khoe G.H., Huang J.C.Y. (1992) Basic Ferric Arsenates -Non Existent, 31–9.

    Google Scholar 

  18. Hager J.P., EPD Congr. 1992, Proc. Symp. TMS Annu. Meet, Miner. Met. Mater. Soc. (publisher), Warrendale.

    Google Scholar 

  19. Hsia T.H., Lo S.L., Lin C.F. (1992) Arsenic(V) Adsorption On Amorphous Iron Oxide: Triple Layer Modelling, Chemosphere, 25 (12), 1825–37.

    Article  CAS  Google Scholar 

  20. Kuhlmeier P.D., Sherwood S.P. (1996) Treatability of inorganic arsenic and organoarsenicals in groundwater, Water Environ. Res., 68 (5), 946–951.

    Article  CAS  Google Scholar 

  21. Sato H., Shiegeta S., Uchida H. (1980) Process of treatment of waters containing arsenic and silica, Japanese patent n° 55.8843.

    Google Scholar 

  22. Shiegetomi Y., Hori Y., Kojima T. (1980) The removal of arsenate in waste water with an adsorbent prepared by binding hydrous iron(III) oxide with Polyacrylamide, Bull. Chem. Soc. Jpn., 53, 1475–1476.

    Article  Google Scholar 

  23. Chanda M, O’driscoll K.F., Rempel G.L. (1988) Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: iminodiacetic chelating resin Chelex 100, Reactive Polymers, 8, 85–95.

    CAS  Google Scholar 

  24. Chanda M, O’driscoll K.F., Rempel G.L. (1988) Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: weak-base chelating resin DOW XFS-4195, Reactive Polymers, 7,251–261.

    CAS  Google Scholar 

  25. Hlavay J., Foldi-Polyak K., Inczedy J. (1984) Removal of arsenic from natural waters, Stud. Environ. Sci, 23, 373–380.

    Article  CAS  Google Scholar 

  26. Isaacson A.E., Corwin R.R., Jeffers T.H. (1994) Arsenic removal using immobilized ferric oxyhydroxides, 47–55.

    Google Scholar 

  27. Harris B., Krause E. (1994) Impurity Control Disposal Hydrometall. Processes, 24th Annu. Hydrometall. Meet., Can. Inst. Min. Metall. Pet., Montreal, Canada.

    Google Scholar 

  28. Yoshida I., Kobayashi H., Ueno K. (1976) Selective adsorption of arsenic ions on silica gel impregnated with ferric hydroxide, Anal. Lett., 9 (12), 1125–1133.

    Article  CAS  Google Scholar 

  29. Maeda S., Ohki A., Tsurusaki Y., Takeshita T. (1990) Iron(III) hydroxide-loaded coral limestone as an adsorbent fer arsenic(III) and arsenic(V), Sep. Sci. Technol, 25 (5), 547–55.

    Article  CAS  Google Scholar 

  30. De Vitre R., Belzile N., Tessier A. (1991) Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides, Limnol. Oceanogr., 36 (7), 1480–1485.

    Article  Google Scholar 

  31. Nishimura T., Robins R.G. (1996) Crystalline phases in the system Fe(III)-As(V)-H20 at 25°C, 521–534.

    Google Scholar 

  32. Dutrizac J.E., Harris G.B.(1996)Iron control and disposal, Proceedings Of The Second International Symposium On Iron Control In Hydrometallurgy, Ottawa, Canada, October 20–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guenegou, T., Jardy, A., Caude, M., Tambute, A. (1998). Removal of Arsenical By-Products from Chemical Warfare Destruction Effluents. In: Holm, F.W. (eds) Effluents from Alternative Demilitarization Technologies. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5310-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5310-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5254-9

  • Online ISBN: 978-94-011-5310-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics