Skip to main content

Overgroups of Special Elements in Simple Algebraic Groups and Finite Groups of Lie Type

  • Chapter
Algebraic Groups and their Representations

Part of the book series: NATO ASI Series ((ASIC,volume 517))

  • 544 Accesses

Abstract

In the last twenty years there has been a tremendous amount of progress in our understanding of subgroup structure of simple groups G, both algebraic over an algebraically closed field and finite. If G is of exceptional type, the progress has been particularly impressive, largely due to the work of Liebeck and Seitz; an excellent survey is the article [25] of Liebeck in this volume. If G is a finite classical simple group, the reduction theorem of Aschbacher [1] enables us to concentrate on the case where the subgroup H is almost simple modulo the subgroup Z of scalars and the (projective) representation of the simple group F* (H/Z) on the natural module V for G is absolutely irreducible. There is a similar reduction theorem for G a classical algebraic group over an algebraically closed field [28]. There are a number of survey articles where the situation is discussed — see, e.g., [21], [24], [35], and [39].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschbacher, M. (1984) On the maximal subgroups of the finite classical groups, Invent. Math. 76, 469–514.

    Article  MathSciNet  MATH  Google Scholar 

  2. Carter, R.W. (1972) Conjugacy classes in the Weyl group, Compositio Math. 25, 1–59.

    MathSciNet  MATH  Google Scholar 

  3. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A. (1985) Atlas of Finite Groups, Oxford University Press.

    MATH  Google Scholar 

  4. Cooperstein, B.N. (1981) Subgroups of exceptional groups of Lie type generated by long root elements, I, II, J. Algebra 70, 270–282; 283–298.

    Google Scholar 

  5. Dempwolff, U. (1987) Linear groups with large cyclic subgroups and translation planes, Rend. Sem. Mat. Univ. Padova 77, 69–113.

    MathSciNet  MATH  Google Scholar 

  6. Goodwin, D. (1998) Ph.D. Thesis, Imperial College, London.

    Google Scholar 

  7. Gordeev, N. (1991) Coranks of elements of linear groups and the complexity of algebras of invariants, Leningrad Math. J. 2, 245–267.

    MathSciNet  MATH  Google Scholar 

  8. Guralnick, R.M. (1998) Some applications of subgroup structure to probabilistic generation and covers of curves, pp. 301–320 of this volume.

    Google Scholar 

  9. Guralnick, R.M., Penttila, T., Praeger, C.E. and Saxl, J. (in press) Linear groups with orders having certain primitive prime divisors, Proc. London Math. Soc..

    Google Scholar 

  10. Guralnick, R.M. and Saxl, J. (1995) Monodromy groups of polynomials, in W.M. Kantor and L. Di Martino (eds.), Groups of Lie type and their Geometries, Cambridge University Press, pp. 125–150.

    Chapter  Google Scholar 

  11. Guralnick, R.M. and Saxl, J. (1997) Generation of finite almost simple groups by conjugates, to appear.

    Google Scholar 

  12. Guralnick, R.M. and Tiep, P.H. (in press) Low-dimensional representations of special linear groups in cross-characteristic.

    Google Scholar 

  13. Hall, J.I., Liebeck, M.W. and Seitz, G.M. (1992) Generators for finite simple groups with applications to linear groups, Quart. J. Math. 43, 441–458.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hering, C. (1974, 1985) Transitive linear groups and linear groups which contain irreducible subgroups of prime order, I, II, Geom. Ded. 2, 425–460; J. Algebra 93, 151–164.

    Google Scholar 

  15. James, G.D. (1983) On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Cam. Phil. Soc. 94, 417–424.

    Article  MATH  Google Scholar 

  16. Jansen, C., Lux, K., Parker, R. and Wilson, R.A. (1995) An Atlas of Brauer Characters, Clarendon Press, Oxford.

    Google Scholar 

  17. Kantor, W.M. (1979) Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc. 248, 347–379.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kemper, G. and Malle, G. (1996) The finite irreducible groups with polynomial ring of invariants, Heidelberg preprint 96–38.

    Google Scholar 

  19. Lawther, R. (1995) Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra 23, 4125–4156.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lawther, R. and Testerman, D.M. (in press) Al subgroups of exceptional algebraic groups, Trans. Amer. Math. Soc..

    Google Scholar 

  21. Liebeck, M.W. (1995) Subgoups of simple algebraic groups and of related finite and locally finite groups of Lie type, in B. Hartley et al. (eds.), Finite and Locally Finite Groups, NATO ASI series, Vol. 471, Kluwer Academic Publishers, Dordrecht, pp. 71–96.

    Chapter  Google Scholar 

  22. Liebeck, M.W. (1996) Regular orbits of linear groups, J. Algebra 184, 1136–1142.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liebeck, M.W. (1996) Characterization of classical groups by orbit sizes on the natural module, Proc. Amer. Math. Soc. 124, 2961–2966.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liebeck, M.W. (1998) Introduction to the subgroup structure of algebraic groups, in R.W. Carter and M. Geck (eds.), Representations of Reductive Groups, Cambridge University Press, to appear.

    Google Scholar 

  25. Liebeck, M.W. (1998) Subgroups of exceptional groups, pp. 275–290 of this volume.

    Google Scholar 

  26. Liebeck, M.W. and Seitz, G.M. (1990) Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Ded. 35, 353–387.

    Article  MathSciNet  MATH  Google Scholar 

  27. Liebeck, M.W. and Seitz, G.M. (1994) Subgroups generated by root elements in groups of Lie type, Annals of Math. 139, 293–361.

    Article  MathSciNet  MATH  Google Scholar 

  28. Liebeck, M.W. and Seitz, G.M. (to appear) On the subgroup structure of classical groups, Invent. Math..

    Google Scholar 

  29. Liebeck, M.W. and Seitz, G.M. (to appear) Subgroups of simple algebraic groups containing elements of fundamental subgroups, Proc. Cambridge Phil. Soc..

    Google Scholar 

  30. Malle, G. Saxl, J. and Weigel, T. (1994) Generation of classical groups, Geom. Ded. 49, 85–116.

    Article  MathSciNet  MATH  Google Scholar 

  31. Neumann, P.M. and Praeger, C. E. (1992) A recognition algorithm for special linear groups, Proc. London Math. Soc. 65, 555–603.

    Article  MathSciNet  MATH  Google Scholar 

  32. Premet, A.A. and Suprunenko, I.D. (1983) Quadratic modules for Chevalley groups over fields of odd characteristic, Math. Nachr. 110, 65–96.

    Article  MathSciNet  MATH  Google Scholar 

  33. Robinson, G.R. (1997) Further reductions for the k(GV)-problem, J. Algebra 195, 141–150.

    Article  MathSciNet  MATH  Google Scholar 

  34. Robinson, G.R. and Thompson, J.G. (1986) On Brauer’s k(B)-problem, J. Algebra 184, 1143–1160.

    Article  MathSciNet  Google Scholar 

  35. Saxl, J. (1995) Finite simple groups and permutation groups, in B. Hartley et al. (eds.), Finite and Locally Finite Groups, NATO ASI series, Vol. 471, Kluwer Academic Publishers, Dordrecht, pp. 97–110.

    Chapter  Google Scholar 

  36. Saxl, J. and Seitz, G.M. (1997) Subgroups of algebraic groups containing regular unipotent elements, J. London Math. Soc. (2) 55, 370–386.

    Article  MathSciNet  MATH  Google Scholar 

  37. Saxl. J. and Wilson, J. S. (1997) A note on powers in simple groups, Proc. Cambridge Phil. Soc. 122, 91–94.

    Article  MathSciNet  MATH  Google Scholar 

  38. Schönert, M. (ed.) (1994) Gap-3.4,Manual, RWTH Aachen.

    Google Scholar 

  39. Scott, L.L. (1998) Linear and nonlinear group actions, and the Newton Institute program, pp. 1-23 of this volume.

    Google Scholar 

  40. Seitz, G.M. (1987) The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc. 365, 1–286.

    MathSciNet  Google Scholar 

  41. Shephard, G.C. and Todd, J.A. (1954) Finite unitary reflection groups, Canad. J. Math. 6, 274–304.

    Article  MathSciNet  MATH  Google Scholar 

  42. Suprunenko, I.D. (1995) Irreducible representations of simple algebraic groups containing matrices with big Jordan blocks, Proc. London Math. Soc. 71, 281–332.

    Article  MathSciNet  MATH  Google Scholar 

  43. Testerman, D.M. (1995) Al type overgroups of elements of order p in semisimple algebraic groups and associated finite groups, J. Algebra 177, 34–76.

    Article  MathSciNet  MATH  Google Scholar 

  44. Wagner, A. (1974) Groups generated by elations, Abh. Math. Sem. Hamburg 41, 190–205.

    Article  MATH  Google Scholar 

  45. Wagner, A. (1977) An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field, Arch. Math. 29, 583–589.

    Article  MATH  Google Scholar 

  46. Wagner, A. (1978) Collineation groups generated by homologies of order greater than 2, Geom. Ded. 7, 387–398.

    Article  MATH  Google Scholar 

  47. Wagner, A. (1980) Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, I, II, III, Geom. Ded. 9, 239–253; 10, 183–189; 10, 475–523.

    Google Scholar 

  48. Wales, D.B. (1978) Linear groups of degree n containing an involution with two eigenvalues -1, II, J. Alg. 53, 58–67.

    Article  MathSciNet  MATH  Google Scholar 

  49. Zalesskii, A.E. and Serezhkin, V.N. (1976) Linear groups generated by transvections, Math. USSR Izv. 10, 25–46.

    Article  Google Scholar 

  50. Zalesskii, A.E. and Serezhkin, V.N. (1981) Finite linear groups generated by reflections, Math. USSR Izv. 17, 477–503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saxl, J. (1998). Overgroups of Special Elements in Simple Algebraic Groups and Finite Groups of Lie Type. In: Carter, R.W., Saxl, J. (eds) Algebraic Groups and their Representations. NATO ASI Series, vol 517. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5308-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5308-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5292-1

  • Online ISBN: 978-94-011-5308-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics