Skip to main content

The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies

  • Chapter
Protein Trafficking in Plant Cells

Abstract

The endoplasmic reticulum (ER) is the port of entry of proteins into the endomembrane system, and it is also involved in lipid biosynthesis and storage. This organelle contains a number of soluble and membrane-associated enzymes and molecular chaperones, which assist the folding and maturation of proteins and the deposition of lipid storage compounds. The regulation of translocation of proteins into the ER and their subsequent maturation within the organelle have been studied in detail in mammalian and yeast cells, and more recently also in plants. These studies showed that in general the functions of the ER in protein synthesis and maturation have been highly conserved between the different organisms. Yet, the ER of plants possesses some additional functions not found in mammalian and yeast cells. This compartment is involved in cell to cell communication via the plasmodesmata, and, in specialized cells, it serves as a storage site for proteins. The plant ER is also equipped with enzymes and structural proteins which are involved in the process of oil body biogenesis and lipid storage. In this review we discuss the components of the plant ER and their function in protein maturation and biogenesis of oil bodies. Due to the large number of cited papers, we were not able to cite all individual references and in many cases we refer the readers to reviews and references therein. We apologize to the authors whose references are not cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeijon C, Hirschberg CB: Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci 17:32–36 (1992).

    PubMed  CAS  Google Scholar 

  2. Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM: Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9: 1481–1493 (1997).

    PubMed  CAS  Google Scholar 

  3. Allen S, Nairn HY, Bulleid NJ: Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J Biol Chem 270:4797–4804 (1995).

    PubMed  CAS  Google Scholar 

  4. Altschuler Y, Galili G: Role of conserved cysteines of a wheat gliadin in its transport and assembly into protein bodies in Xenopus oocytes. J Biol Chem 269: 6677–6682 (1994).

    PubMed  CAS  Google Scholar 

  5. Altschuler Y, Rosenberg R, Harel R, Galili G: The N-and C-terminal regions regulate the transport of wheat γ-gliadin through the endoplasmic reticulum in Xenopus oocytes. Plant Cell 5: 443–450 (1993).

    PubMed  CAS  Google Scholar 

  6. Andrews DW, Johnson AE: The translocon: more than a hole in the ER membrane? Trends Biochem Sci 21: 365–368 (1996).

    PubMed  CAS  Google Scholar 

  7. Anfinsen CB: Principles that govern the folding of protein chains. Science 181: 223–230 (1973).

    PubMed  CAS  Google Scholar 

  8. Argos P, Pederson K, Marks MD, Larkins BA: A structural model for maize zein proteins. J Biol Chem 257: 9984–9990 (1994).

    Google Scholar 

  9. Aridor M, Weissman J, Bannykh S, Nuoffer C, Balch WE: Cargo selection by the COPII budding machinery during export from the ER. J Cell Biol 141: 61–70 (1998).

    PubMed  CAS  Google Scholar 

  10. Bagga S, Adams H, Kemp JD, C: S-G: Accumulation of the 15-kD zein in novel protein bodies in transgenic tobacco. Plant Physiol 107: 13–23. (1995).

    PubMed  CAS  Google Scholar 

  11. Bagga S, Adams HP, Rodriguez FD, Kemp JD, Sengupta-Gopalan C: Coexpression of the maize δ-zein and β-zein genes results in stable accumulation of δ-zein in endoplasmic reticulum-derived protein bodies formed by β-zein. Plant Cell 9: 1683–1696 (1997).

    PubMed  CAS  Google Scholar 

  12. Balch W, McCaffery JM, Plutner H, Farquhar MC: Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76: 841–852 (1994).

    PubMed  CAS  Google Scholar 

  13. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Scheckman R: COPII: a membrane coat formed by sec proteins thet drive vesicle budding from the endolasmic reticulum. Cell 77:895–907 (1994).

    PubMed  CAS  Google Scholar 

  14. Bause E: Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209: 331–336 (1983).

    PubMed  CAS  Google Scholar 

  15. Bird P, Gething M-J, Sambrook J: Translocation in yeast and mammlian cells: not all signal sequences are functionally equivalent. J Cell Biol 105: 2905–2914 (1987).

    PubMed  CAS  Google Scholar 

  16. Bollini R, Chrispeels MJ: The rough endoplasmic reticulum is the site of reserve-protein synthesis in developing Phaseolus vulgaris cotyledons. Planta 146: 487–501 (1979).

    CAS  Google Scholar 

  17. Bollini R, Vitale A, Chrispeels MJ: In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps. J Cell Biol 96: 999–1007 (1983).

    PubMed  CAS  Google Scholar 

  18. orgese N, D’Arrigo A, De Silvestris M, Pietrini G: NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. In: Borgese N, Harris JR (eds) Subcellular Biochemistry, Endoplasmic Reticulum, pp. 313–341. Plenum Press, New York (1993).

    Google Scholar 

  19. Boston RS, Fontes EBP, Shank BB, Wrobel RL: Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants. Plant Cell 3: 497–505 (1991).

    PubMed  CAS  Google Scholar 

  20. Boston RS, Gillikin JW, Wrobel RL: Coordinate induction of three ER-Iumenal stress proteins in maize endosperm mutants. J Cell Biochem 19A: 143 (1996).

    Google Scholar 

  21. Boston RS, Viitanen PV, Vierling E: Molecular chaperones and protein folding in plants. Plant Mol Biol 34: 191–222 (1996).

    Google Scholar 

  22. Breiman A, Fawcett TW, Ghirardi ML, Mattoo AK: Plant organelles contain distinct peptidylprolyl cis, trans-isomerases. J Biol Chem 267: 21293–21296 (1992).

    PubMed  CAS  Google Scholar 

  23. Brodsky JL, McCracken AA: ER-associated and proteasome-mediated protein degradation: how two topologicals restricted events come together. Trends Cell Biol 7:151–156 (1997).

    PubMed  CAS  Google Scholar 

  24. Bulleid NJ, Freedman RB: Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335: 649–651 (1988).

    PubMed  CAS  Google Scholar 

  25. Campos N, Boronat A: Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7: 2163–2174 (1995).

    PubMed  CAS  Google Scholar 

  26. Campos N, Palau J, Torrent M, Ludevid D: Signal recognition-like particles are present in maize. J Biol Chem 263:9646–9650 (1988).

    PubMed  CAS  Google Scholar 

  27. Campos N, Palau J, Zwieb C: Diversity of 7 SL RNA from the signal recognition particle of maize endosperm. Nucl Acids Res 17: 1573–1588 (1989).

    PubMed  CAS  Google Scholar 

  28. Ceriotti A, Colman A: Binding to membrane within the ER cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes. EMBO J 7: 633–638 (1988).

    PubMed  CAS  Google Scholar 

  29. Ceriotti A, Pedrazzini E, Fabbrini MS, Zoppè M, Bollini R, Vitale A: Expression of wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. Eur Biochem 202: 959-968 (1991).

    Google Scholar 

  30. Chen F, Hayes PM, Mulrooney DM, Pan A: Identification and characterization of CDNA clones encoding plant calreticulin. Plant Cell 6: 83@-843 (1994).

    Google Scholar 

  31. Chirico Wj, Waters MG, Blobel G: 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810 (1988).

    PubMed  CAS  Google Scholar 

  32. Chittenden K, Gowda K, Black SD, Zwieb C: Interaction of rice and human SRP19 polypeptides with signal recognition particle RNA. Plant Mol Biol 34: 507–515 (1997).

    PubMed  CAS  Google Scholar 

  33. Chrispeels MJ: Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42: 21–53 (1991).

    CAS  Google Scholar 

  34. Coleman CE, Hewrman EH, Takasaki K, Larkins BA: The maizey γ-zein sequesters α-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8: 2335–2345 (1996).

    PubMed  CAS  Google Scholar 

  35. Coleman CE, Lopes MA, Gillikin IW, Boston RS, Larkius BA: A defective signal peptide in the maize high-lysine mutant fluory-2. Proc Natl Acad Sci USA 92: 6828–6831 (1995).

    PubMed  CAS  Google Scholar 

  36. Cooper JB, Heuser JE, Varner JE: 3,4-dehydroproline inhibits cell wall assembly and cell division in tobacco protoplasts. Plant Physiol 104: 747–752 (1994).

    PubMed  CAS  Google Scholar 

  37. Coraggio I, Martegani E, Compagno C, Porro D, Alberghiina L, Bernard L, Faoro F, Viotti A: Differential targeting and accumulation of normal and modified zein polypeptides in transformed yeast. Eur J Cell Biol 47: 165–172. (1988).

    CAS  Google Scholar 

  38. Coughlan SJ, Hastings C, Winfrey Jr. R: Cloning and characterization of the calreticulin gene from Ricinus communis L. Plant Mol Biol 34: 897–911 (1997).

    PubMed  CAS  Google Scholar 

  39. Cox JS, Chapman RE, Walter P: The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8: 1805–1814 (1997).

    PubMed  CAS  Google Scholar 

  40. Cox JS, Shamu CE, Walter P: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206 (1993).

    PubMed  CAS  Google Scholar 

  41. Cox JS, Walter P: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391–404 (1996).

    PubMed  CAS  Google Scholar 

  42. Craven RA, Egerton M, Stirling CJ: A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J 15: 2640–2650 (1996).

    PubMed  CAS  Google Scholar 

  43. Crowley KS, Reinhart GD, Johnson AE: The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73: 1101–1115 (1993).

    PubMed  CAS  Google Scholar 

  44. D’Amico L, Valsasina B, Daminati MG, Fabbrini MS, Nitti G, Bollini R, Ceriotti A, Vitale A: Bean homologs of the mammalian glucose-regulated proteins: induction by tuni-camycin and interaction with newly synthesized seed storage proteins in the endoplamic reticulum. Plant J 2: 443–455 (1992).

    PubMed  Google Scholar 

  45. De Loose M, Gheysen G, Tire C, Gielen J, Villarroel R, Genetello C, Van Montagu M, Depicker A, Inzé D: The extensin signal peptide allows secretion of a heterologous protein from protoplasts. Gene 99: 95–100 (1991).

    PubMed  Google Scholar 

  46. Denecke J: Soluble endoplasmic reticulum resident proteins and their function in protein synthesis and transport. Plant Physiol Biochem 34: 197–205 (1996).

    CAS  Google Scholar 

  47. Denecke J, Botterman J, Deblaere R: Protein secretion in plant cells can occur via a default pathway. Plant Cell 2: 51–59 (1990).

    PubMed  CAS  Google Scholar 

  48. Denecke J, Carlsson LE, Vidal S, Hoglund AS, Ek B, Van Zeijl MJ, Sinjorgo KM, Palva ET: The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391–406 (1995).

    PubMed  CAS  Google Scholar 

  49. Denecke J, Goldman MHS, Demolder J, Seurinck J, Botterman J: The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3: 1025–1035 (1991).

    PubMed  CAS  Google Scholar 

  50. Deshaies RJ, Koch BD, Werner-Washburne M, Craig E, Sheckman R: A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805 (1988).

    PubMed  CAS  Google Scholar 

  51. Dickinson CD, Floener LA, Lilley GG, Nielsen NC: Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA. Proc Natl Acad Sci USA 84: 5525–5529 (1987).

    PubMed  CAS  Google Scholar 

  52. Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzed U, Zchman K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R: A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J 15: 6931–6942 (1996).

    PubMed  CAS  Google Scholar 

  53. Dresselhaus T, Hagel C, Lorz H, Kranz E: Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol Biol 31: 23–24 (1996).

    PubMed  CAS  Google Scholar 

  54. Esen A, Stetler DA: Immunocytochemical localization of δ-zein in the protein bodies of maize endosperm cells. Am Bot 79:243–248 (1992).

    CAS  Google Scholar 

  55. Essex DW, Chen K, Swiatkowska M: Localization of protein disulfide isomerase to the external surface of the platelet plasma membrane. Blood 15: 2168–2173 (1995).

    Google Scholar 

  56. Evans EA, Gilmore R, Blobel G: Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA 83: 581–585 (1986).

    PubMed  CAS  Google Scholar 

  57. Firek S, Draper J, Owen MRL, Gandecha A, Cockburn B, Withelam GC: Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol 23: 861–870 (1993).

    PubMed  CAS  Google Scholar 

  58. Fitchette-Lainé A-C, Denmat L-A, Lerouge P, Faye L: Analysis of N-and O-glycosylation of plant proteins. In: Cunningham C, Porter A (eds) Methods in Biotechnology, Recombinant Proteins from Plants: Production and Isolation of Clinically Useful Compounds, vol. 3, pp. 271–290. Humana Press, Totowa, NJ (1997).

    Google Scholar 

  59. Fitting T, Kabbat D: Evidence for a glycoprotein’ signal’ involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J Biol Chem 257: 14011–14017 (1982).

    PubMed  CAS  Google Scholar 

  60. Fontes EBP, Shank BB, Wrobel RL, Moose SP, O’Brian GR, Wurtzel ET, Boston RS: Characterization of an im-munoglobin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496 (1991).

    PubMed  CAS  Google Scholar 

  61. Freedman RB: Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57: 1069–1072 (1989).

    PubMed  CAS  Google Scholar 

  62. Freedman RB, Hirst TR, Tuite MF: Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336 (1994).

    PubMed  CAS  Google Scholar 

  63. Freskgård P-O, Bergenhem N, Johnson B-H, Svensson M, Carlsson U: Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anydrase. Science 258: 466–468 (1992).

    PubMed  Google Scholar 

  64. Galili G: The prolamin storage proteins of wheat and its relatives. In: Larkins BA, Vasil IK (eds) Cellular and Molecular Biology of Plant Seed Development, pp. 221–256. Kluwer Academic Publishers, Dordrecht, Netherlands (1997).

    Google Scholar 

  65. Galili G, Altschuler Y, Levanony H: Assembly and transport of seed storage proteins. Trends Cell Biol 3: 437–443 (1993).

    PubMed  CAS  Google Scholar 

  66. Galili G, Giorini-Silfen S, Shimoni Y, Altschuler Y, Levanony H, Shani N, Karchi H, Galun E: Assembly and intracellular transport of wheat storage proteins. J Cell Biochem (Suppl 19A-019): 132 (1995).

    Google Scholar 

  67. Galili G, Shimoni Y, Giorini-Silfen S, Levanony H, Altschuler Y, Shani N: Wheat storage proteins: assembly, transport and deposition in protein bodies. Plant Physiol Biochem 34: 245–252 (1996).

    CAS  Google Scholar 

  68. Gallois P, Makishima T, Hecht V, Despres B, Laudié M, Nishimoto T, Cooke R: An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J 11: 1325–1331 (1997).

    PubMed  CAS  Google Scholar 

  69. Gasser CS, Gunning DA, Budelier KA, Brown SM: Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA 87: 9519–9523 (1990).

    PubMed  CAS  Google Scholar 

  70. Gavel Y, Von Heijne G: Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Prot Engng 3: 433–442 (1990).

    CAS  Google Scholar 

  71. Geli M, Torrent M, Ludevid D: Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6: 1911–1922 (1994).

    PubMed  CAS  Google Scholar 

  72. Gething M-J, Sambrook J: Protein folding in the cell. Nature 355:33–45 (1992).

    PubMed  CAS  Google Scholar 

  73. Gillikin JW, Fontes EPB, Boston RS: Protein-protein interactions within the endoplasmic reticulum. In: Galbraith DW, Bourque DP, Bohnert HJ (eds) Methods in Cell Biology, pp. 309–323. Academic Press, San Diego (1995).

    Google Scholar 

  74. Gillikin JW, Zhang F, Coleman CE, Bass HW, Larkins BA, Boston RS: A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiol 114:345–352 (1997).

    PubMed  CAS  Google Scholar 

  75. Gomord V, Denmat LA, Fitchette-Lainé AC, Satiat-Jeunemaitre B, Hawes C, Faye L: The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 2: 313–325 (1997).

    Google Scholar 

  76. Gomord V, Faye L: Signals and mechanisms involved in intracellular transport of secreted proteins in plants. Plant Physiol Biochem 34: 165–182 (1996).

    CAS  Google Scholar 

  77. Görlich D, Rapoport TA: Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75: 615–630 (1993).

    PubMed  Google Scholar 

  78. Haas IG, Wabl M: Immunoglobulin heavy chain binding protein. Nature 306: 387–389 (1983).

    PubMed  CAS  Google Scholar 

  79. Hamman BD, Chen J-C, Johnson EE, Johnson AE: The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane. Cell 89: 535–544 (1997).

    PubMed  CAS  Google Scholar 

  80. Hammond C, Helenius A: Quality control in the secretory pathway. Curr Opin Cell Biol 7: 523–529 (1995).

    PubMed  CAS  Google Scholar 

  81. Hanein D, Matlack KES, Jungnickel B, Plath K, Kalies KU, Miller KR, Rapoport TA, Akey CW: Oiligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87: 721–732 (1996).

    PubMed  CAS  Google Scholar 

  82. Hann BC, Walter P: The signal recognition particle in S. cerevisiae. Cell 67: 131–144 (1991).

    PubMed  CAS  Google Scholar 

  83. Hart GW, Brew K, Grant GA, Bradshaw RA, Lennarz WJ: Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem 254: 9747–9753 (1979).

    PubMed  CAS  Google Scholar 

  84. Hartmann E, Rapoport TA, Lodish HF: Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 86: 5786–5790 (1989).

    PubMed  CAS  Google Scholar 

  85. Hartmann E, Sommer T, Prehn S, Görlich D, Jentsch S, Rapoport TA: Evolutionary conservation of components of the protein translocation complex. Nature 367: 654–657 (1994).

    PubMed  CAS  Google Scholar 

  86. Hassan A-M, Wesson C, Trumble WR: Calreticulin is the major Ca2+ storage protein in the endoplasmic reticulum of the pea plant (Pisum sativum). Plant Physiol 221: 54–59 (1995).

    Google Scholar 

  87. Hatano K, Shimada T, Hiraiwa N, Nishimura M, Hara-Nishimura I: A rapid increase in the level of binding protein (BiP) is accompanied by synthesis and degradation of storage proteins in pumpkin cotyledons. Plant Cell Physiol 38: 344–351 (1997).

    PubMed  CAS  Google Scholar 

  88. Hayano T, Hirose M, Kikuchi M: Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Lett 377: 505–511 (1995).

    PubMed  CAS  Google Scholar 

  89. Heard DJ, Filipowicz W, Marques JP, Palme K, Gualberto JM: An upstream U-snRNA gene-like promoter is required for transcription of the Arabidopsis thaliana 7SL RNA gene. Nuc Acids Res 23: 1970–1976 (1995).

    CAS  Google Scholar 

  90. Hein M, Tang Y, McLeod DA, Janda KD, Hiatt A: Evaluation of immunoglobulins from plant cells. Biotechnol Prog 7: 455–461 (1991).

    PubMed  CAS  Google Scholar 

  91. Helenius A, Trombetta ES, Herbert DN, Simons JF: Calnexin calreticulin and the folding of glycoproteins. Trends Cell Biol 7: 193–200 (1997).

    CAS  Google Scholar 

  92. Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E: Localization of small heat-shock proteins to the higher plant endomembrane system. Mol Cell Biol 13: 238–247 (1993).

    PubMed  CAS  Google Scholar 

  93. Hendershot L, Bole D, Kearney JF: The role of immunoglobulin heavy chain binding protein in immunoglobulin transport. Immunol Today 8: 111–114 (1987).

    CAS  Google Scholar 

  94. Hendershot L, Bole D, Kohler G, Kearney JF: Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104:761–767 (1987).

    PubMed  CAS  Google Scholar 

  95. Hendershot LM: Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J Cell Biol 111: 829–837 (1990).

    PubMed  CAS  Google Scholar 

  96. Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Benis MA, Napier RM: Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202: 313–323 (1997).

    PubMed  CAS  Google Scholar 

  97. Hendrick JP, Hartle F-U: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384 (1993).

    PubMed  CAS  Google Scholar 

  98. Herman EM: Immunogold-localization and synthesis of an oil-body membrane protein in developing soybean seeds. Planta 172: 336–345 (1987).

    CAS  Google Scholar 

  99. Herman EM: Multiple origins of intravacuolar protein accumulation in plant cells. In: Malhotra K (eds), Advances in Structural Research, pp. 243–283. JAI Press, Greenwich, CT (1994).

    Google Scholar 

  100. Herman EM: Cell and molecular biology of seed oil development. In: Kigel J, Galili G (eds) Seed Development and Germination, pp. 195–214. Marcel Dekker, New York (1995).

    Google Scholar 

  101. Hesse T, Garbers C, Brzobohaty B, Kreimer G, Söil D, Melkonian M, Schell J, Palme K: Two members of the ERabp family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize. Plant Mol Biol 23: 57–66 (1993).

    PubMed  CAS  Google Scholar 

  102. Hiatt A, Cafferkey R, Bowdish K: Production of antibodies in transgenic plants. Nature 342: 76–78 (1989).

    PubMed  CAS  Google Scholar 

  103. High S, Andersen SSL, Görlich D, Hartmann E, Prehn S, Rapoport TA, Dobberstein B: Sec61 is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J Cell Biol 121: 743–750 (1993).

    PubMed  CAS  Google Scholar 

  104. Hills MJ, Watson MD, Murphy DJ: Targeting of oleosin to the oil bodies of oilseed rape Brassica napus L. Planta 189: 24–29 (1993).

    PubMed  CAS  Google Scholar 

  105. Hoffman LM, Donaldson DD, Bookland R, Rashka K, Herman EM: Synthesis and protein body deposition of maize 15kD zein in transgenic tobacco seeds. EMBO J 6: 3213–3221 (1987).

    PubMed  CAS  Google Scholar 

  106. Hoffman LM, Donaldson DD, Herman EM: A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Mol Biol 11: 717–729 (1988).

    CAS  Google Scholar 

  107. Holland EC, Drickamer K: Signal recognition particle mediates the insertion of a transmembrane protein which has a cytoplasmic NH2 terminus. J Biol Chem 261: 1286–1292 (1986).

    PubMed  CAS  Google Scholar 

  108. Hoist B, Brunn AW, Kielland-Brandt MC, Winther JR: Competition between folding and glycosylation in the endoplasmic reticulum. EMBO J 15: 3538–3546 (1996).

    Google Scholar 

  109. Holwerda BC, Padgett HS, Rojers JC: Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4: 307–318 (1992).

    PubMed  CAS  Google Scholar 

  110. Hong E, Davidson AR, Kaiser CA: A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 135: 623–633 (1996).

    PubMed  CAS  Google Scholar 

  111. Hori H, Kaushal GP, Elbein AD: Biosynthesis of mannose-containing lipid-linked oligosaccharides by solubilized enzyme preparation from cultured soybean cells. Plant Physiol 77: 840–846 (1985).

    PubMed  CAS  Google Scholar 

  112. Hori H, Pan YT, Molyneux RJ, Elbein AD: Inhibition of processing of plant N-Iinked oligosaccharides by castanospermine. Arch Biochem Biophys 228: 525–533 (1984).

    PubMed  CAS  Google Scholar 

  113. Huang AHC: Oleosins and oil bodies in seeds and other organs. Plant Physiol 110: 1055–1061 (1996).

    PubMed  CAS  Google Scholar 

  114. Huang L, Franklin AE, Hoffman NE: Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem 268: 6560–6566 (1993).

    PubMed  CAS  Google Scholar 

  115. Hull JD, Gilmore RA, Lamb RA: Integration of a small integral membrane protein, M2, of influenza virus into the endoplasmic reticulum: analysis of the internal signal-anchor domain of a protein with an ectoplasmic NH2 terminus. J Cell Biol 106: 1489–1498 (1988).

    PubMed  CAS  Google Scholar 

  116. Hunt DC, Chrispeels MJ: The signal peptide of a vacuolar protein is necessary and sufficient for the efficient secretion of a cytosolic protein. Plant Physiol 96: 18–25 (1991).

    PubMed  CAS  Google Scholar 

  117. Hwang C, Sinskey AJ, Lodish HF: Oxidized redox state of glutathione in the endoplasmic reticulum. Nature 257: 1496–1502 (1992).

    CAS  Google Scholar 

  118. Iturriaga G, Jefferson RA, Bevan MW: Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1: 381–390 (1989).

    PubMed  CAS  Google Scholar 

  119. Jackson MR, Nilsson T, Peterson PA: Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9: 3153–3162 (1990).

    PubMed  CAS  Google Scholar 

  120. John DC, Grant ME, Bulleid NJ: Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of theβ-subunit (PDI) in preventing misfolding and aggregation of the α-subunit. EMBO J 12: 1587–1595 (1993).

    PubMed  CAS  Google Scholar 

  121. Jones RL: Protein synthesis and secretion by the barley aleurone: a perspective. Israel J Bot 34: 377–395 (1985).

    CAS  Google Scholar 

  122. Jung R, Young-Woo N, Saalbach I, Muntz K, Nielsen N: Role of sulfhydryl redox state and disulfide bonds in processing and assembly of 11S seed globulins. Plant Cell 9: 2037–2050 (1997).

    PubMed  CAS  Google Scholar 

  123. Kalies K-U, Görlich D, Rapoport TA: Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex. J Cell Biol 126: 925–934 (1994).

    PubMed  CAS  Google Scholar 

  124. Kalinski A, Rowley DL, Loer DS, Foley C, Buta G, Herman EM: Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta 195: 611–621 (1995).

    PubMed  CAS  Google Scholar 

  125. Kaushal GP, Pastuszak I, Hatanaka K-i, Elbein AD: Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem 1990: 16271–16279 (1990).

    Google Scholar 

  126. Kaushal GP, Zeng Y, Elbein AD: Biosynthesis of glucosidase II in suspension-cultured soybean cells. J Biol Chem 14536–14542 (1993).

    Google Scholar 

  127. Kelleher D, Kreibich G, Gilmore R: Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69: 55–65 (1992).

    PubMed  CAS  Google Scholar 

  128. Kelleher DJ, Gilmore R: The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbplp, Swplp and four additional polypeptides. J Biol Chem 269: 12908–12917 (1994).

    PubMed  CAS  Google Scholar 

  129. Kermode AR, Fisher SA, Polishchuk E, Wandelt C, Spencer D, Higgins TJV: Accumulation and proteolytic processing of vicilin deletion-mutant proteins in the leaf and seed of transgenic tobacco. Planta 197: 501–513 (1995).

    PubMed  CAS  Google Scholar 

  130. Kirihara JA, Hunsperger JP, Mahoney WC, Messing JW: Differential expression of a gene for a methionine-rich storage protein in maize. Mol Gen Genet 211: 477–484. (1988).

    PubMed  CAS  Google Scholar 

  131. Klappa P, Zimmermann M, Zimmermann R: The membrane protein TRAMp and Sec6lap may be involved in post-translational transport of presecretory proteins into mammalian microsomes. FEBS Lett 341: 281–287 (1994).

    PubMed  CAS  Google Scholar 

  132. Knittler MR, Haas IG: Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 11: 1573–1581 (1992).

    PubMed  CAS  Google Scholar 

  133. Koivu J, Myllyla R, Helaakoski T, Pihlajaniemi T, Tasanen K, Kivirikko KI: A single polypeptide acts both as the β subunit of prolyl 4-hydroxylase and as a protein disulfide-isomerase. J Biol Chem 262: 6447–6449 (1987).

    PubMed  CAS  Google Scholar 

  134. Koizumi N: Isolation and responses to stress of a gene that encodes a luminal binding protein in Arabidopsis thaliana. Plant Cell Physiol 37: 862–865 (1996).

    PubMed  CAS  Google Scholar 

  135. Kopito RR: ER quality control: the cytoplasmic connection. Cell 88: 427–430 (1997).

    PubMed  CAS  Google Scholar 

  136. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664 (1985).

    PubMed  CAS  Google Scholar 

  137. Kozutsumi Y, Segal M, Normington K, Gething M-J, Sambrook J: The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462 (1988).

    PubMed  CAS  Google Scholar 

  138. Kuehn MJ, Herrmann JM, Scheckman R: COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391: 187–190 (1998).

    PubMed  CAS  Google Scholar 

  139. Kuehn MJ, Schekman R: COPII and secretory cargo capture into transport vesicles. Curr Opin Cell Biol 9: 447–483 (1997).

    Google Scholar 

  140. Kwiatkowski BA, Zielinska-Kwiatkowska AG, Migdalski A, Kleczkowski LA, Wasilewska LD: Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene 165: 219–222 (1995).

    PubMed  CAS  Google Scholar 

  141. Laboissiere MC, Sturley SL, Raines RT: The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem 270: 28006–28009 (1995).

    PubMed  CAS  Google Scholar 

  142. Lacey DJ, Hills MJ: Heterogeneity of the endoplasmic reticulum with respect to lipid syntheis in developing seeds of Brassica napus L. Planta 199: 545–551 (1996).

    CAS  Google Scholar 

  143. LaMantia ML, Lennarz WJ: The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74: 899–908 (1993).

    PubMed  CAS  Google Scholar 

  144. Lee DH, Bennett S, Pedersen K: Evidence against a potential endoplasmic reticulum transmembrane domain of 27K zein expressed in Xenopus oocytes. Prot Eng 8: 91–96 (1995).

    CAS  Google Scholar 

  145. Lee HI, Gal S, Newman TC, Raikhel NV: The Arabidopsis endoplasmic reticulum retention receptor functions in yeast. Proc Natl Acad Sci USA 90: 11433–11437 (1993).

    PubMed  CAS  Google Scholar 

  146. Lee K, Bih FY, Learn GH, Ting JTL, Sellers C, Huang AHC: Oleosins in the gametophyte of Pinus and Brassica and their phylogenetic relationship with those in the sporophytes of various species. Planta 193: 461–469 (1994).

    PubMed  CAS  Google Scholar 

  147. Lending CR, Larkins BA: Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011–1023 (1989).

    PubMed  CAS  Google Scholar 

  148. Lerouge P, Fitchette-Lainé A-C, Chekkafi A, Avidgor V, Faye L: N-Iinked oligosaccharide processing is not necessary for glycoprotein secretion in plants. Plant J 10: 713–719 (1996).

    PubMed  CAS  Google Scholar 

  149. Levanony H, Rubin R, Altschuler Y, Galili G: Evidence for a novel route of wheat storage proteins in vacuoles. J Cell Biol 119: 117–128 (1992).

    Google Scholar 

  150. Lewis MJ, Pelham HR: A human homologue of the yeast HDEL receptor. Nature 348: 162–163 (1990).

    PubMed  CAS  Google Scholar 

  151. Li CP, Larkins BA: Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol 30: 873–882 (1996).

    PubMed  CAS  Google Scholar 

  152. Li X, Franceschi VR, Okita TW: Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72: 869–879 (1993).

    PubMed  CAS  Google Scholar 

  153. Li X, Wu Y, Zhang DZ, Gillikin JW, Boston RS, Franceschi VR, Okita TW: Rice prolamin protein body biogenesis: a BiP-mediated process. Science 262: 1054–1056 (1993).

    PubMed  CAS  Google Scholar 

  154. Lindstrom J, Chu B, Belanger F: Molecular cloning and characterization of an Arabidopsis thaliana gene for the 54 kDa subunit of the signal recognition particle. Plant Mol Biol 23: 1265–1272 (1993).

    PubMed  CAS  Google Scholar 

  155. Lodish HF, Kong N, Snider M, Strous GJAM: Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304: 80–83 (1983).

    PubMed  CAS  Google Scholar 

  156. Loer DS, Herman EM: Cotranslational integration of soybean (Glycine max) oil body membrane protein oleosin into microsomal membranes. Plant Physiol 101: 993–998 (1993).

    PubMed  CAS  Google Scholar 

  157. Lopes MA, Coleman CE, Kodrzycki R, CR L: Synthesis of an unusual α-zein protein is correlated with the phenotypic effects of floury-2 mutation in maize. Mol Gen Genet 245: 537–547 (1994).

    PubMed  CAS  Google Scholar 

  158. Lord JM: Go outside and see the proteasome. Curr Biol 6: 1067–1069 (1996).

    PubMed  CAS  Google Scholar 

  159. Luan S, Kudla J, Gruissem W, Schreiber SL: Molecular characterization of a FKBP-type immunophilin from higher plants. Proc Natl Acad Sci USA 93: 6964–6969 (1996).

    PubMed  CAS  Google Scholar 

  160. Lund P, Dunsmuir P: A plant signal sequence enhances the secretion of bacterial ChiA in transgenic tobacco. Plant Mol Biol 18: 47–53 (1992).

    PubMed  CAS  Google Scholar 

  161. Lund P, Lee RY, Dunsmuir P: Bacterial chitinase is modified and secreted in transgenic tobacco. Plant Physiol 91: 130–135 (1989).

    PubMed  CAS  Google Scholar 

  162. Lupattelli F, Pedrazzini E, Bollini R, Vitale A: The rate of phaseolin assembly is controlled by the glucosylation state of its N-Iinked oligosaccharide chains. Plant Cell 9: 597–609 (1997).

    PubMed  CAS  Google Scholar 

  163. Marcantonio EE, Amar-Costenec A, Kreibich G: Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subtractions contain equimolar amounts of ribophorins and ribosomes. J Cell Biol 99 (1984).

    Google Scholar 

  164. Marocco A, Santucci A, Cerioli S, Motto M, Difonzo N, Thompson R, Salamini F: Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell 3: 507–515 (1991).

    PubMed  CAS  Google Scholar 

  165. Marshallsay C, Prehn S, Zwieb C: cDNA cloning of the wheat germ SRP 7S RNAs. Nucl Acids Res 17: 1771 (1989).

    PubMed  CAS  Google Scholar 

  166. Matsuoka K, Watanabe N, Nakamura K: O-Glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8: 877–889 (1995).

    PubMed  CAS  Google Scholar 

  167. Maurel C, Kado RT, Guern J, Chrispeels M: Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J 14: 3028–3035 (1995).

    PubMed  CAS  Google Scholar 

  168. Maurel C, Reizer J, Schroeder J, Chrispeels M: The vacuolar membrane protein α-TIP creates water specific channels in Xenopus oocytes. EMBO J 12: 2241–2247 (1993).

    PubMed  CAS  Google Scholar 

  169. McGinnes LW, Morrison TG: Disulfide bond formation is a determinant of glycosylation site usage in the hemagglutinin-neuramidase glycoprotein in Newcastle-Disease virus. J Virol 71: 3083–3089 (1997).

    PubMed  CAS  Google Scholar 

  170. Melnick J, Dul JL, Argon Y: Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370: 373–375 (1994).

    PubMed  CAS  Google Scholar 

  171. Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S: Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Comm 190: 1130–1135 (1993).

    PubMed  CAS  Google Scholar 

  172. Meyer DI, Krause E, Dobberstein B: Secretory protein translocation across membranes-the role of the’ docking protein’. Nature 297: 647–650 (1982).

    PubMed  CAS  Google Scholar 

  173. Miernyk JA, Duck NB, Shatters RGJ, Folk WR: The 70-kilodalton heat shock cognate can act as a molecular chaperone during the membrane translocation of a plant secretory protein precursor. Plant Cell 4: 821–829 (1992).

    PubMed  CAS  Google Scholar 

  174. Miyata S, Akazawa T: α-Amylase biosynthesis: evidence for temporal sequence of NH2-terminal peptide cleavage and protein glycosylation. Proc Natl Acad Sci USA 79: 6566–5668 (1982).

    PubMed  CAS  Google Scholar 

  175. Mizuno M, Singer SJ: A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Proc Natl Acad Sci USA 90: 5732–5736 (1993).

    PubMed  CAS  Google Scholar 

  176. Moore PJ, Swords KMM, Lynch MA, Staehelin LA: Spatial organization of the assembly pathways of glycoproteins and complex polisaccharides in the Golgi apparatus of plants. J Cell Biol 112: 589–602 (1991).

    PubMed  CAS  Google Scholar 

  177. Mori K, Ma W, Gething MJ, Sambrook J: A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743–756 (1993).

    PubMed  CAS  Google Scholar 

  178. Mothes W, Heinrich SU, Graf R, Nilsson I, von Heijne G, Brunner J, Rapoport TA: Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89: 523–533 (1997).

    PubMed  CAS  Google Scholar 

  179. Munro S, Pelham HRB: An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300 (1986).

    PubMed  CAS  Google Scholar 

  180. Munro S, Pelham HRB: A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907 (1987).

    PubMed  CAS  Google Scholar 

  181. Murphy DJ: Structure, Function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32: 247–280 (1993).

    PubMed  CAS  Google Scholar 

  182. Nam YW, Jung R, Nielsen NC: Adenosine 5’-triphosphate is required for the assembly of 11S seed proglobulins in vitro. Plant Physiol 115: 1629–1639 (1997).

    PubMed  CAS  Google Scholar 

  183. Napier JA, Richard G, Turner MFP, Shewry PR: Trafficking of wheat gluten proteins in transgenic tobacco plants: γ-gliadin does not contain an endoplasmic retention signal. Planta 203: 488–494 (1997).

    PubMed  CAS  Google Scholar 

  184. Napier JA, Stobart AJ, Shewry PR: The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol Biol 31: 945–956 (1996).

    PubMed  CAS  Google Scholar 

  185. Napier RM: Trafficking of the auxin-binding protein. Trends Plant Sci 2: 251–255 (1997).

    Google Scholar 

  186. Napier RM, Trueman S, Henderson J, Boyce JM, Hawes C, Fricker MD, Venis MA: Purification, sequencing and functions of calreticulin from maize. J Exp Bot 46: 1603–1613 (1995).

    CAS  Google Scholar 

  187. Nelson DE, Glaunsinger B, Bohnert HJ: Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiol 114: 29–37 (1997).

    PubMed  CAS  Google Scholar 

  188. Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10: 1–6 (1997).

    CAS  Google Scholar 

  189. Nielsen NC, Jung R, Nam Y, Beaman TW, Oliveira LO, Bassuner RB: Synthesis and assembly of 11S globulins. J Plant Physiol 145: 641–647 (1995).

    CAS  Google Scholar 

  190. Nilsson I-M, von Heijne G: Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268: 5798–5801 (1993).

    PubMed  CAS  Google Scholar 

  191. Noiva R, Freedman RB, Lennarz WJ: Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J Biol Chem 268: 19210–19217 (1993).

    PubMed  CAS  Google Scholar 

  192. Noiva R, Lennarz WJ: Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267: 3553–3556 (1992).

    PubMed  CAS  Google Scholar 

  193. Okamoto T, Nakayama H, Seta K, Isobe T, Minamikawa T: Posttranslational processing of a carboxy-terminal propeptide containing a KDEL sequence of plant vacuolar cysteine endopeptidase (SH-EP). FEBS Lett 351: 31–34 (1994).

    PubMed  CAS  Google Scholar 

  194. Okita TW, Li X, Roberts MW: Targeting of mRNAs to domains of the endoplasmic reticulum. Trends Cell Biol 4: 91–96 (1994).

    PubMed  CAS  Google Scholar 

  195. Okita TW, Rogers JC: Compartmentation of proteins in the endomembrane system in plant cells. Annu Rev Plant Physiol Plant Mol Biol 47: 327–350 (1996).

    PubMed  CAS  Google Scholar 

  196. Olden K, Paratt RM, Jaworski C, Yamada K: Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci USA 76: 791–795 (1979).

    PubMed  CAS  Google Scholar 

  197. Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R: A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3429–3436 (1990).

    PubMed  CAS  Google Scholar 

  198. Osborne TB: The Vegetable Proteins. Longmans, Green and Co., London (1924).

    Google Scholar 

  199. Pahl H, Baeuerle PA: Endoplasmic-reticulum-induced signal transduction and gene expression. Trends Cell Biol 7: 50–55 (1997).

    PubMed  CAS  Google Scholar 

  200. Pang SZ, Rasmussen J, Ye GN, Sanford JC: Use of the signal peptide of Pisum vicilin to translocate β-glucuronidase in Nicotiana tabacum. Gene: 229–234 (1992).

    Google Scholar 

  201. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport T: Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81: 561–570 (1995).

    PubMed  CAS  Google Scholar 

  202. Parodi AJ, Mendelzon DH, Lederkremer GH, Martín-Barrientos J: Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2occurs in rat liver and Phaseolus vulgaris cells. J Biol Chem 259: 6351–6357 (1984).

    PubMed  CAS  Google Scholar 

  203. Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A: Protein quality control along the route to the plant vacuole. Plant Cell 9: 10 (1997).

    Google Scholar 

  204. Pedrazzini E, Giovinazzo G, Bollini R, Ceriotti A, Vitale A: Binding of BiP to an assembly-defective protein in plant cells. Plant J 5: 103–110 (1994).

    CAS  Google Scholar 

  205. Pedrazzini E, Vitale A: The binding protein (BiP) and the synthesis of secretory proteins. Plant Physiol Biochem 34: 207–216 (1996).

    CAS  Google Scholar 

  206. Pelham HR: Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr Opin Cell Biol 7: 530–535 (1995).

    PubMed  CAS  Google Scholar 

  207. Pelham HRB: Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5: 1–23 (1989).

    PubMed  CAS  Google Scholar 

  208. Pelham HRB: The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15: 483–486. (1990).

    PubMed  Google Scholar 

  209. Poruchynsky MS, Atkinson PH: Primary sequence domains required for the retention of rotavirus VP7 in the endoplasmic reticulum. J Cell Biol 107: 1697–706 (1988).

    PubMed  CAS  Google Scholar 

  210. Prehn S, Wiedmann M, Rapoport TA, Zwieb C: Protein translocation across wheat germ microsomal membranes requires an SRP-Iike component. EMBO J 6: 2093–2097 (1987).

    PubMed  CAS  Google Scholar 

  211. Pueyo JU, Chrispeels MJ, Herman EM: Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Planta 196: 586–596 (1995).

    PubMed  CAS  Google Scholar 

  212. Rapoport TA, Jungnickel B, Kutay U: Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65: 271–303 (1996).

    PubMed  CAS  Google Scholar 

  213. Reiss G, te Heesen S, Gilmore R, Zufferey R, Aebi M: A specific screen for oligosaccharyltransferase mutations identifies the 9 kDa OST5 protein required for optimal activity in vivo and in vitro. EMBO J 16: 1164–1172 (1997).

    PubMed  CAS  Google Scholar 

  214. Restrepo-Hartwig MA, Carrington JC: The tobacco etch potyvirus 6kD protein is membrane-associated and involved in viral replication. J Virol 68: 2388–2397 (1994).

    PubMed  CAS  Google Scholar 

  215. Riedel L, Pütz A, Hauser M-T, Luckinger R, Wassenegger M, SϤnger HL: Characterization of the signal recognition particle (SRP) RNA population of tomato (Lycopersicon esculentum). Plant Mol Biol 27: 669–680 (199

    PubMed  CAS  Google Scholar 

  216. Romisch K, Ali BRS: Similar processes mediate glycopeptide export from the endoplasmic reticulum in mammalian cells and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 6730–6734 (199

    PubMed  CAS  Google Scholar 

  217. Romisch K, Schekman R: Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in Sacchawmyces cerevisiae. Proc Natl Acad Sci USA 89: 7227–7231 (1992).

    PubMed  CAS  Google Scholar 

  218. Rosenberg N, Shimoni Y, Altschuler Y, Levanony H, Volokita N, Galili G: Wheat (Triticum aestivum L.) γ-gliadin accumulates in dense protein bodies within the endoplasmic reticulum of yeast. Plant Physiol 102: 61–69 (1993).

    PubMed  CAS  Google Scholar 

  219. Rothman JE: Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601 (1989).

    PubMed  CAS  Google Scholar 

  220. Sarmiento C, Ross JHE, Herman E, Mirphy DJ: Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 11: 783–796 (1997).

    PubMed  CAS  Google Scholar 

  221. Schaad MC, Jensen PE, Carrington JC: Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16: 4049–4059 (1997).

    PubMed  CAS  Google Scholar 

  222. Scheele G, Tartakoff A: Exit of nonglycosylated secretory proteins from rough endoplasmic reticulum is asynchronus in the exocrine pancreas. J Biol Chem 260: 926–931 (1985).

    PubMed  CAS  Google Scholar 

  223. Schernthaner MA, Matzke MA, Matzke AJM: Endosperm-specific activity of α zein gene promoter in transgenic tobacco plants. EMBO J 7: 1249–1255. (1988).

    PubMed  CAS  Google Scholar 

  224. Schreiber SL: Chemistry and biology of immunophilins and their immunosuppressive ligands. Science 251: 283–287 (1991).

    PubMed  CAS  Google Scholar 

  225. Schutze M-P, Peterson PA, Jackson MR: An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J 13: 1696–1705 (1994).

    PubMed  CAS  Google Scholar 

  226. Semenza JC, Hardwick KG, Dean N, Pelham HR: ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61: 1349–1357 (1990).

    PubMed  CAS  Google Scholar 

  227. Sengupta C, DeLuca V, Bailey D, Verma DPS: Post-translational processing of 7S and 11S components of soybean storage proteins. Plant Mol Biol 1: 19–34 (1981).

    CAS  Google Scholar 

  228. Shatters R, Miernyk J: A zein signal sequence functions as a signal-anchor when fued to maize alcohol dehydrogenase. Biochim Biophys Acta 1068: 179–188 (1991).

    PubMed  CAS  Google Scholar 

  229. Sheldon PS, Venis MA: Purification and characterization of cytosolic and microsomal cyclophilins from maize (Zea mays). Biochem J 315: 965–969 (199

    PubMed  CAS  Google Scholar 

  230. Shewry PR, Napier JA, Tatham AS: Seed storage proteins: structures and biosynthesis. Plant Cell 7: 945–956 (1995).

    PubMed  CAS  Google Scholar 

  231. Shimoni Y, Galili G: Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies. J Biol Chem 271: 18869–18874 (1996).

    PubMed  CAS  Google Scholar 

  232. Shimoni Y, Zhu X-Z, Levanony H, Segal G, Galili G: Purification, characterization and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol 108: 327–335. (1995).

    PubMed  CAS  Google Scholar 

  233. Shiu RPC, Pouyssegur J, Pastan I: Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci USA 74: 3840–3844 (1977).

    PubMed  CAS  Google Scholar 

  234. Shorrosh BS, Dixon RA: Molecular cloning of a putative endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatydilinositol-specific phospholipase C. Proc Natl Acad Sci USA 88: 10941–10945 (1991).

    PubMed  CAS  Google Scholar 

  235. Shorrosh BS, Dixon RA: Molecular characterization and expression of an alfalfa protein with sequence similarity to mammalian ERp72, a glucose-regulated endoplasmic reticulum protein containing active site sequences of protein disulphide isomerase. Plant J 2: 51–58 (1992).

    PubMed  CAS  Google Scholar 

  236. Shotwell M, Larkins BA: The biochemistry and molecular biology of seed storage proteins. In: Marcus E (ed) The Biochemistry of Plants: A Comprehensive Treatise, pp. 296–345. Academic Press, Orlando, FL (1989).

    Google Scholar 

  237. Showalter AM: Structure and function of plant cell wall proteins. Plant Cell 5: 9–23 (1993).

    PubMed  CAS  Google Scholar 

  238. Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, van den Elzen PJM, Hoekema A: Production of correctly processed human serum albumin in transgenic plants. Bio/technology 8: 217–221 (1990).

    PubMed  CAS  Google Scholar 

  239. Silberstein S, Gilmore R: Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 10: 849–858 (1996).

    PubMed  CAS  Google Scholar 

  240. Smith MA, Stobart AK, Shewry PR, Napier JA: Tobacco eytochrome b5: cDNA isolation, expression analysis and in vitro protein targeting. Plant Mol Biol 25: 527–537 (1994).

    PubMed  CAS  Google Scholar 

  241. Sommer T, Wolf D: Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11: 1227–1233 (1997).

    PubMed  CAS  Google Scholar 

  242. Sousa M, Ferrero-Garcia MA, Parodi AJ: Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 31: 97–105 (1992).

    PubMed  CAS  Google Scholar 

  243. Sousa M, Parodi A: The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 14: 4196–4203 (1995).

    PubMed  CAS  Google Scholar 

  244. Spiess M: Heads or tails: what determines the orientation of proteins in the membrane. FEBS Lett 369: 76–79 (1995).

    PubMed  CAS  Google Scholar 

  245. Staehelin LA: The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11: 1151–1165 (1997).

    PubMed  CAS  Google Scholar 

  246. Staehelin LA, Driouich A: Brefeldin A effects in plants. Plant Physiol 114: 401–403 (1997).

    PubMed  CAS  Google Scholar 

  247. Sturm A: N-glycosylation of plant proteins. In: Montreuil J, Schachter H, Vliegenthart JFG (eds) Glycoproteins, pp. 521–541. Elsevier Science, Amsterdam (1995).

    Google Scholar 

  248. Sturm A, Chrispeels MJ, Wieruzeski JM, Strecker G, Montreuil J: Structural analysis of the N-linked oligosaccharides from jack bean α-mannosidase. In: Montreuil J, Verbert G, Spik G and Fournet B (eds) Glycoconjugates: Proceedings of the 9th International Symposium on Glycoconjugates, Lille, France, p. A107 (1987).

    Google Scholar 

  249. Sturm A, Johnson KD, Szumilo T, Elbein AD, Chrispeels MJ: Subcellular localization of glycosidases and glycosyl-transferases involved in the processing of N-Iinked oligosaccharides. Plant Physiol 85: 741–745 (1987).

    PubMed  CAS  Google Scholar 

  250. Szumilo T, Kaushal GP, Elbein AD: Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys 247: 261–271 (1986).

    PubMed  CAS  Google Scholar 

  251. Tatu U, Helenius A: Interactions between newly synthesized glycoproteins, calnexin, and a network of resident chaper-ones in the endoplasmic reticulum. J Cell Biol 136: 555–565 (1997).

    PubMed  CAS  Google Scholar 

  252. Thoyts pJE, M.I. M, Stobart AK, Griffiths WT, Shewry PR, Napier JA: Expression and in vivo targeting of a sunflower oleosin. Plant Mol Biol 29: 403–410 (1995).

    PubMed  CAS  Google Scholar 

  253. Tooze J, Kern HF, Fuller SD, Howell KE: Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol 109: 35–50 (1989).

    PubMed  CAS  Google Scholar 

  254. Torrent M, Geli MI, Ruiz-Avila L, Canals MJ, Puigdmenech P, Ludevid D: Role of structural domains for maizey γ-zein retention in Xenopus oocytes. Planta 192: 512–518 (1994).

    PubMed  CAS  Google Scholar 

  255. Trombetta SE, Parodi AJ: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem 267: 9236–9240 (1992).

    PubMed  CAS  Google Scholar 

  256. Tzen JTC, Cao YZ, Ratnayake C, Huang AHC: Lipids protein and structure of seed oil bodies from diverse species. Plant Physiol 101: 267–276 (1993).

    PubMed  CAS  Google Scholar 

  257. van Hoist G-J, Fincher GB: Polyprolin II conformation in the protein component of arabinogalactan-protein from Lolium multiflorum. Plant Physiol 75: 1163–1164 (1984).

    Google Scholar 

  258. van Hoist G-J, Varner JE: Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root. Plant Physiol 74: 247–251 (1984).

    Google Scholar 

  259. Vitale A, Bielli A, Ceriotti A: The binding protein associates with monomeric phaseolin. Plant Physiol 107: 1411–1418 (1995).

    PubMed  CAS  Google Scholar 

  260. Vitale A, Bollini R: Legume storage proteins. In: Kigel H, Galili G (eds) Seed Development and Germination, pp. 73–102. Marcel Dekker, New York (1995).

    Google Scholar 

  261. Vitale A, Ceriotti A, Denecke J: The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44: 1417–1444 (1993).

    CAS  Google Scholar 

  262. Vogel JP, Misra LM, Rose MD: Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110: 1885–1895 (1990).

    PubMed  CAS  Google Scholar 

  263. von Heijne G: Signal sequences. The limits of variation. J Mol Biol 184: 99–105 (1985).

    Google Scholar 

  264. Wada K, Buchanan BB: Purothionin: a seed protein with thioredoxin activity. FEBS Lett 124: 237–240 (1981).

    CAS  Google Scholar 

  265. Wahlberg JM, Spiess M: Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J Cell Biol 137: 555–562 (1997).

    PubMed  CAS  Google Scholar 

  266. Walter P, Blobel G: Translocation of proteins across the endoplasmic reticulum II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91: 551–556 (1981).

    PubMed  CAS  Google Scholar 

  267. Walter P, Blobel G: Translocation of proteins across the endoplasmic reticulum. 111. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91: 557–561 (1981).

    PubMed  CAS  Google Scholar 

  268. Wang CC, Tsou CL: Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J 7: 1515–1517 (1993).

    PubMed  CAS  Google Scholar 

  269. Wanker EE, Sun Y, Savitz AJ, Meyer DI: Functional characterization of the 180 kDa ribosome receptor in vivo. J Cell Biol 130: 29–39 (1995).

    PubMed  CAS  Google Scholar 

  270. Wessels HP, Spiess M: Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell 55: 61–70 (1988).

    PubMed  CAS  Google Scholar 

  271. Wickner G, Lodish HF: Multiple mechanisms of protein insertion into and across membranes. Science 230: 400–407 (1985).

    PubMed  CAS  Google Scholar 

  272. Wieland FT, Cleason ML, Serafini TA, Rothman JE: The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50: 289–300 (1987).

    PubMed  CAS  Google Scholar 

  273. Wolin SL, Walter P: Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J Cell Biol 109: 2617–2622 (1989).

    PubMed  CAS  Google Scholar 

  274. Yamauchi D, Akasofu H, Minamikawa T: Cysteine endopeptidase from Vigna mungo: gene structure and expression. Plant Cell Physiol 33: 789–797 (1992).

    CAS  Google Scholar 

  275. Zhang F, Boston RS: Increases in binding protein (BiP) accompany changes in protein body morphology in three high-lysine mutants of maize. Protoplasma 171: 142–152 (1992).

    CAS  Google Scholar 

  276. Zimmerman DL, Walter P: Reconstitution of protein translocation activity from partially solubilized microsomal vesicles. J Biol Chem 265: 4048–4053 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Soll

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Galili, G., Sengupta-Gopalan, C., Ceriotti, A. (1998). The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. In: Soll, J. (eds) Protein Trafficking in Plant Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5298-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5298-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6229-9

  • Online ISBN: 978-94-011-5298-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics