Skip to main content

Optical Properties of Ices From UV to Infrared

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Remote sensing of ices at the surfaces and in the atmospheres of system solar objects are the subject of increasing studies in the UV, visible and infrared ranges. The spectro-imagers and spectrophotometers aboard space probes will further expand these studies. One critical problem for the interpretation of the astronomical absorption and emission spectra is the availability of laboratory data on the optical properties of the relevant ices.

After a discussion of the different types of observations and their specific spectral ranges, we review the different types of laboratory measurements of the optical properties of ices and discuss the problem of optical constant calculation in each case.

The various physical parameters (i.e. phase, crystalline quality, temperature and thermal history, isotopes) that influence the spectra of pure ices are analyzed. Similarly, we discuss the optical properties of mixtures and their dependence on the type of mixture (solid solution, specific compound or multi-phase system) as well as on various physical parameters (temperature, composition, phase, thermodynamical state). A brief summary of the available optical properties of ices and mixtures of planetary interest is followed by an assessement of what is still unknown (or poorly known) in the field. Finally, we discuss the use of laboratory data in reflectance and emittance models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, L. and Moscovits, M. (1989) Chemistry and Physics of Matrix-Isolated Species. Elsevier Sciences, Amsterdam (North-Holland).

    Google Scholar 

  • Arhenkiel, R.K. (1971) Modified Kramers-Kronig analysis of optical spectra. J. Opt. Soc. Am., 61, pp. 1651–1655.

    Article  ADS  Google Scholar 

  • Behringer, R.E. (1958) Number of single, double and triple clusters in a system containing two types of atoms. J. Chem. Phys., 29, pp. 537–539.

    Article  ADS  Google Scholar 

  • Berland, B.S., Haynes, D.R., Foster, K.L., Tolbert, M.A., George, S.M. and Toon, O.B. (1994) Refractive indices of amorphous and crystalline HNO3/H2O films representative of polar stratospheric clouds. J. Phys. Chem., 98, pp. 4358–4364.

    Article  Google Scholar 

  • Bertie, J.E. and Morrison, M.M. (1980) The infrared spectra of the hydrates of ammonia, NH3.H2O and 2NH3.H2O at 95°K. J. Chem. Phys., 73, pp. 4832–4837.

    Article  ADS  Google Scholar 

  • Bogani, F. and Schettino, V. (1978) Dipole-dipole interaction and internal vibrations in molecular crystals. J. Phys. C, 11, pp. 1275–1281.

    Article  ADS  Google Scholar 

  • Bohn, R.B., Sandford, S.A., Allamandolla, L.J. and Cruikshank, D.P. (1994) Infrared spectroscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons. Icarus, 111, pp. 151–173

    Article  ADS  Google Scholar 

  • Buffeteau, T. and Desbat, B. (1989) Thin-film optical constants determined from infrared reflectance and transmittance measurements. Appl. Spectrosc, 43, pp. 1027–1032.

    Article  ADS  Google Scholar 

  • Califano, S., Schettino, V. and Neto, N. (1981) Lattice Dynamics of Molecular Crystals. Springer, Berlin.

    Book  Google Scholar 

  • Calvani, P., Cunsolo, S., Lupi, S. and Nucara, A. (1992) The near-infrared spectrum of solid CH4. J. Chem. Phys., 96, pp. 7372–7379

    Article  ADS  Google Scholar 

  • Calvin, W.M. (1990) Additions and corrections to the absorption coefficients of CO2 ice: Application to the martian south polar cap. J. Geophys. Res., B 95, pp. 14743–14750.

    Article  ADS  Google Scholar 

  • Calvin, W.M. and Clark, R.N. (1991) Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm. Icarus, 89, pp. 305–317.

    Article  ADS  Google Scholar 

  • Cardini, G., Righini, R., Löwen, H.W. and Jödl, H.J. (1992) Sideband modeling in molecular crystals N2 and CO2. J. Chem. Phys.,96, pp. 5703–5711.

    Article  ADS  Google Scholar 

  • Carr, B.R., Chadwick, B.M., Edwards, O.S., Long, D.A. and Wharton, F.C. (1980) The infrared activation of the N-N stretching vibration in nitrogen matrices. J. Mol. Struct., 62, pp. 291–295.

    Article  ADS  Google Scholar 

  • Chamberland, A., Belzile, R. and Cabana, A. (1970) Infrared spectra and structure of methane-noble gas mixed crystals: Influence of temperature and methane concentration on the ν3 vibration band of methane. Can J. Chem., 48, pp. 1129–1139.

    Article  ADS  Google Scholar 

  • Clapp, M.L. and Miller, R.E. (1993) Shape effects in the infrared spectrum of ammonia aerosols. Icarus, 105, pp. 529–536.

    Article  ADS  Google Scholar 

  • Clapp, M.L., Miller, R.E. and Worsnop, D.R. (1995) Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra. J. Chem. Phys., 99, pp. 6317–6326.

    Article  Google Scholar 

  • Cruikshank, D.P., Brown, R.H., Calvin, W.M. and Roush, T.L. (1997a) Ices on the satellites of Jupiter, Saturn, and Uranus. This book.

    Google Scholar 

  • Cruikshank, D.P., Roush, T.L., Owen, T.C., Quirico, E. and de Bergh, C. (1997b) The surface compositions of Triton, Pluto, and Charon. This book.

    Google Scholar 

  • Decius, J.C. and Hexter, R.M. (1977) Molecular vibrations in crystals. McGraw-Hill, New York.

    Google Scholar 

  • Dello Russo, N. and Khanna, R.K. (1996) Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. Icarus, 123, pp. 366–395.

    Article  ADS  Google Scholar 

  • DiLella, D.P. and Tevault, D.E. (1986) Infrared absorption of solid nitrogen activated by CO2, H2O, and C2N2. Chem. Phys. Lett., 126, pp. 38–42.

    Article  ADS  Google Scholar 

  • Dones, L. (1997) The rings of the outer planets. This book.

    Google Scholar 

  • Dubost, H. (1976) Infrared absorption spectra of carbon monoxide in rare gas matrices. Chem. Phys., 12, pp. 139–151.

    Article  ADS  Google Scholar 

  • Dubost, H., Charneau, R. and Harig, M. (1982) High-resolution diode laser spectroscopy of CO in solid N2: Effect of dipolar broadening on vibrational transitions. Chem. Phys., 69, pp. 389–405.

    Article  ADS  Google Scholar 

  • Dunder, T. and Miller, R.E. (1990) The infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell. J. Chem. Phys., 93, pp. 3693–3703.

    Article  ADS  Google Scholar 

  • Ewing, G.E. and Sheng, D.T. (1988) Infrared spectroscopy of CO2 ultrafine particles. J. Chem. Phys., 92, pp. 4063–4066.

    Article  Google Scholar 

  • Fily, M., Leroux, C, Lenoble, J. and Sergent, C. (1997) Terrestrial snow and ice studies from remote sensing in the solar spectrum and the thermal infrared. This book.

    Google Scholar 

  • Fink, U., and Sill, G.T. (1982) The infrared spectral properties of frozen volatiles. In: Comets. L.L. Wilkening (Ed)., University of Arizona Press, Tucson, pp. 164–202.

    Google Scholar 

  • Fleyfel, F. and Devlin, J.P. (1989) FT-IR spectra of CO2 clusters. J. Phys. Chem., 93, pp. 7292–7294.

    Article  Google Scholar 

  • Foggi, P. and Schettino, V. (1992) Phonon relaxation in molecular crystals: Theory and experiments. Riv. Nuovo Cim. Soc. Fisica, 7, pp. 1–82.

    Article  Google Scholar 

  • Forget, F. (1997) Mars CO2 ice polar caps. This book.

    Google Scholar 

  • Gaffey, S.J., McFadden, L.A., Nash, D. and Pieters, CM. (1993) Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In: Remote Geochemical analysis: elemantal and mineralogical composition. C.M. Pieters and P.A.J. Englert Eds, Cambridge Univ. Press, pp. 43–77.

    Google Scholar 

  • Gradie, J. and Veverka, J. (1984) Photometric properties of powdered sulfur. Icarus, 58, pp. 227–245.

    Article  ADS  Google Scholar 

  • Grenfell, T.C. and Perovich, D.K. (1981) Radiation absorption coefficients of polycrystalline ice from 400–1400 nm. /. Geophys. Res., C 86, pp. 7447–7450.

    Article  ADS  Google Scholar 

  • Grundy, W.M., Schmitt, B. and Quirico, E. (1993) The temperature dependent spectra of α and β nitrogen ice with application to Triton. Icarus, 105, pp. 254–258.

    Article  ADS  Google Scholar 

  • Grundy, W.M., Quirico, E., Schmitt, B. (1997) The temperature dependent spectrum of methane ice between 14000 and 3100 cm-1 (0.7 to 3.2 (μm). Icarus, in preparation.

    Google Scholar 

  • Grundy, W.M. and Schmitt, B. (1997) The temperature-dependent near-infrared absorption spectrum of H2O ice.J. Geophys. Res. E., in preparation.

    Google Scholar 

  • Hansen, G.B. (1992) The spectral absorption of CO2 ice from 0.18 to 4.8 microns. Bull. Am. Astron. Soc, 24, p. 978.

    ADS  Google Scholar 

  • Hansen, G.B. (1996a) The infrared absorption spectrum of carbon dioxide ice. PhD Thesis, Univ. of Washington.

    Google Scholar 

  • Hansen, G.B. (1996b) Spectral absorption coefficient of CO2 ice. 1. Experimental setup and technique. J. Geophys. Res., E, submitted.

    Google Scholar 

  • Hapke, B. and Graham, F. (1989). Spectral properties of condensed phases of disulfur monoxide, polysulfur oxide, and irradiated sulfur. Icarus, 79, pp. 47–55.

    Article  ADS  Google Scholar 

  • Hapke, B., Wells, E., Wagner, J. and Partlow, W. (1981). Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2. Icarus, 47, pp. 361–367.

    Google Scholar 

  • Hapke, B.W. (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Howell, R.R., Nash, D.B., Geballe, T.R. and Cruikshank, D.P. (1989). High-resolution infrared spectroscopy of Io and possible surface materials. Icarus, 78, pp. 27–37.

    Article  ADS  Google Scholar 

  • Hudgins, D.M., Sandford, S.A., Allamandola, L.J. and Tielens, A.G.G.M. (1993) Mid-and far-infrared spectroscopy of ices: Optical constants and integrated absorbances. Astrophys. J. Suppl. Ser., 86, pp. 713–870.

    Article  ADS  Google Scholar 

  • Hudson, R.L. and Moore, M.H. (1993) Far-infrared investigations of a methanol clathrate hydrate: Implications for astronomical observations. Astrophys. J., 404, pp. L29–32.

    Article  ADS  Google Scholar 

  • Irvine, W.M. and Pollack, J.B. (1968) Infrared optical properties of water and ice spheres. Icarus, 8, pp. 324–360.

    Article  ADS  Google Scholar 

  • Jenniskens, P. and Blake, D.F. (1996) Crystallization of amorphous water ice in the solar system. Astrophys. J., 473, pp. 1104–1113.

    Article  ADS  Google Scholar 

  • Jödl, H.J., Loewen, W. and Griffith, D. (1987) FTIR-spectra of solid O2, N2, and CO. Solid State Commun., 61, pp. 503–506.

    Article  Google Scholar 

  • Jödl, H.J. (1989) Solid-state aspects of matrices. Chemistry and Physics of Matrix-Isolated Species (L. Andrews and M. Moskovits, eds), chap. 12.

    Google Scholar 

  • Johnson, B.R. and Atreya, S.K. (1996) Feasibility of determining the composition of planetary ices by far infrared observations: Application to matian cloud and surface ices. Icarus, 119, pp. 405–426.

    Article  ADS  Google Scholar 

  • Johnson, B.R. (1997) Sputtering and desorption from icy surfaces. This book.

    Google Scholar 

  • Kargel, J.S. and Lunine, J.I. (1997) Clathrates hydrates on Earth and in the solar system. This book.

    Google Scholar 

  • Kerker, M. (1969) The scattering of light and other electromagnetic radiations. Academic Press Inc..

    Google Scholar 

  • Khanna, R.K., Perera-Jarmer, MA. and Ospina, M.J. (1987) Vibrational infrared and Raman spectra of dicyanoacetylene. Spectrochim. Acta, A 43, pp. 421–425.

    ADS  Google Scholar 

  • Khanna, R.K., Zhao, G., Ospina, M.J. and Pearl, J.C. (1988a) Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infra-red spectra. Spectrochim. Acta, A 44, pp. 581–586.

    ADS  Google Scholar 

  • Khanna, R.K., Ospina, M.J. and Zhao, G. (1988b) Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2. Icarus, 74, pp. 527–535.

    Article  ADS  Google Scholar 

  • Khare, B.N., Thompson, W.R., Sagan, C, Arakawa, E.T., Bruel, C, Judish, J.P., Khanna, R.K. and Pollack, J.B. (1990) Optical constants of solid methane. In: First International Conference on Laboratory Research or Planetary Atmospheres, edited by K. Fox et al., NASA Conf. Publ., 3077, pp. 327–339.

    Google Scholar 

  • Khare, B.N., Thompson, W.R., Cheng, L., Chyba, C, Sagan, C, Arakawa, E.T., Meisse, C. and Tuminello, P.S. (1993) Production and optical constants of ice tholin from charged particle irradiation of (1:6) C2H6/H2O at 77 K. Icarus, 103, pp. 290–300.

    Article  ADS  Google Scholar 

  • Kouchi, A. and Kuroda, T. (1990) Amorphization of cubic ice by ultraviolet irradiation. Nature, 344, pp. 134–135.

    Article  ADS  Google Scholar 

  • Kou, L., Labrie, D. and Chylek, P. (1993) Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range. Appl. Opt., 32, pp. 3531–3540.

    Article  ADS  Google Scholar 

  • Landau, A., Allin, E.J. and Welsh, H.L. (1962) The absoption spectrum of solid oxygen in the wavelength region from 12,000 Åto 3300 Å. Spectrochem. Acta, 18, pp. 1–19.

    Article  ADS  Google Scholar 

  • Legay, F., (1977) Vibrational relaxation in matrices. In Chemical and Biochemical applications of lasers. (C.B. Moore ed.), Academic Press, 2, p. 43.

    Google Scholar 

  • Legay, F. and Legay-Sommaire, N. (1982) Vibrational absorption spectrum of solid CO in the first harmonic region. Two-phonon transition. Chem. Phys., 65, pp. 49–57.

    Article  ADS  Google Scholar 

  • Lepault, J., Freeman, R. and Dubochet, J. (1983) J. Microsc, 132. RP3.

    Article  Google Scholar 

  • Löwen, H.W., Bier, K.D. and Jödl, H.J. (1990) Vibron-phonon exitations in the molecular crystals N2, O2 and CO by Fourier transform infrared and Raman studies. J. Chem. Phys., 93, pp. 8565–8575.

    Article  ADS  Google Scholar 

  • Lunine, J.I. and Stevenson, D.J. (1985) Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser., 58, pp. 493–531.

    Article  ADS  Google Scholar 

  • Martonchik, J.V., Orton, G.S. and Appleby, J.F. (1984). Optical properties of NH3 ice from the far infrared to the near ultraviolet. Appl. Opt., 23, pp. 541–547.

    Article  ADS  Google Scholar 

  • Masterson, C.M. and Khanna, R.K. (1990) Absorption intensities and complex refractive indices of crystalline HCN, HC3N, and C4N2 in the infrared region. Icarus, 83, pp. 83–92.

    Article  ADS  Google Scholar 

  • McPhedran, R.C., Botten, L.C., McKenzie, D.R. and Netterfield, R.P. (1984) Unambiguous determination of optical constants of absorbing films by reflectance and transmittance measurements. Appl. Opt., 23, pp. 1197–1205.

    Article  ADS  Google Scholar 

  • Moore, M.H. and Hudson, R.L. (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation. Astrophys. J., 401, pp. 353–360.

    Article  ADS  Google Scholar 

  • Moses, J.I. and Nash, D.B. (1991) Phase transformations and the spectral reflectance of solid sulfur: Can metastable sulfur allotropes exist on Io? Icarus, 89, pp. 277–304.

    Article  ADS  Google Scholar 

  • Mukai, T. and Krätschmer, W. (1986) Optical constants of the mixture of ices. Earth Moon Planets, 36, pp. 145–155.

    Article  ADS  Google Scholar 

  • Nash, D.B. and Howell, R.R. (1989) Hydrogen sulfide on Io: evidence from telescopic and laboratory infrared spectra. Science, 244, pp. 454–457.

    Article  ADS  Google Scholar 

  • Nash, D. (1994) On Io’s 2.788-μm band: Origin by SO2 or H2O? Icarus, 107, pp. 418–421.

    Article  ADS  Google Scholar 

  • Nash, D.B. and Betts, B.H. (1995) Laboratory infrared spectra (2.3–23 μm) of SO2 phases: Application to Io surface analysis. Icarus, 117, pp. 402–419.

    Article  ADS  Google Scholar 

  • Nash, D.B. and Betts, B.H. (1996) Ices on Io: Composition and texture. This book.

    Google Scholar 

  • Nelander, B. (1976) On the infrared spectrum of a carbon dioxide containing nitrogen matrix. Chem. Phys. Lett., 42, pp. 187–189.

    Article  ADS  Google Scholar 

  • Nelander, B. (1980) Infrared spectrum of the water formaldehyde complex in solid argon and solid nitrogen. J. Chem. Phys., 72, pp. 77–84.

    Article  ADS  Google Scholar 

  • Nelson, R.M. and Smythe, W.D. (1986) Spectral reflectance of solid sulfur trioxide (0.25–5.2 μm): Implication for Jupiter’s satellite Io. Icarus, 66, pp. 181–187.

    Article  ADS  Google Scholar 

  • Nelson, R.M., Smythe, W.D., Hapke, B.W. and Cohen, A.J. (1990) On the effect of X rays on the color of elemental sulfur: Implications for Jupiter’s Satellite Io. Icarus, 85, pp. 326–334.

    Article  ADS  Google Scholar 

  • Oehler, A. (1996) Experimentelle und theoretische Untersuchung der goniospek-trometrischen eigenschaften regolithartiger materialien in den specktralbereichen UV, VIS and NIR. Thesis, Berlin, Germany.

    Google Scholar 

  • Ospina, M., Zhao, G. and Khanna, R.K. (1988) Absolute intensities and optical constants of crystalline C2N2 in the infrared region. Spectrochim. Acta, A 44, pp. 23–26.

    ADS  Google Scholar 

  • Palumbo, M.E. and Strazzulla, G. (1993) The 2140 cm-1 band of frozen CO: Laboratory experiments and astrophysical applications. Astron. Astrophys., 269, pp. 568–580.

    ADS  Google Scholar 

  • Pearl, J. (1988) A review of Voyager IRIS results on Io. EOS trans. A G U abstract 32-05. p. 394.

    Google Scholar 

  • Pearl, J., Ngoh, M., Ospina, M. and Khanna, R. (1991) Optical constants of solid methane and ethane from 10000 to 450 cm-1. J. Geoph. Res., 96, pp. 477–482

    ADS  Google Scholar 

  • Pelletier, E. (1991) Methods for determining optical parameters of thin films. In: Handbook of Optical Constants of Solids II (E.D. Palik Ed.), Academic Press, pp. 57–73.

    Google Scholar 

  • Perovich, D.K. and Govoni, J.W. (1991) Absorption coefficients of ice from 250 to 400 nm. Geophys. Res. Lett., 18, pp. 1233–1235.

    Article  ADS  Google Scholar 

  • Quirico, E. (1995) Etudes spectroscopiques proche infrarouges de solides moléculaires. Application l’étude des surfaces glacées de Triton et Pluton. Thesis, LGGE — Université Joseph Fourier, Grenoble, France.

    Google Scholar 

  • Quirico, E., Schmitt, B., Bini, R. and Salvi, P.R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2:CH4 mixtures. Planet. Space Sci., 44, pp. 973–986.

    Article  ADS  Google Scholar 

  • Quirico, E. and Schmitt, B. (1997a) Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implication for Triton and Pluto. Icarus, 127, pp. 354–378.

    Article  ADS  Google Scholar 

  • Quirico, E. and Schmitt, B. (1997b) A spectroscopic study of CO diluted in N2 ice: Applications for Triton and Pluto. Icarus, 128, in press.

    Google Scholar 

  • Rollet, A.P. and Vuillard, G. (1956) Sur un nouvel hydrate de l’ammoniac. C. R. Acad. Sci., 243, pp. 383–386.

    Google Scholar 

  • Sack, N.J., Johnson, R.E., Boring, J.W. and Baragiola, R.A. (1992) The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus, 100, pp. 534–540.

    Article  ADS  Google Scholar 

  • Salama, F., Allamandola, L.J., Witteborn, F.C., Cruikshank, D.P., Sandford, S.A. and Bregman, J.D. (1990) The 2.5–5.0 μm spectra of Io: Evidence for H2S and H2O frozen in SO2. Icarus, 83, pp. 66–82.

    Article  ADS  Google Scholar 

  • Salama, F., Allamandola, L.J., Sandford, S.A., Bregman, J.D., Witteborn, F.C. and Cruikshank, D.P. (1994) Is H2O present on Io? The detection of a new strong band near 3590 cm-1 (2.79 μm). Icarus, 107, pp. 413–417.

    Article  ADS  Google Scholar 

  • Salisbury, J.W. (1993) Mid-infrared spectroscopy: Laboratory data. In: Remote Geo-chemical analysis: Elemantal and mineralogical composition. C.M. Pieters and P.A.J. Englert Eds, Cambridge Univ. Press, pp. 79–98.

    Google Scholar 

  • Samuelson, R. (1997) Atmospheric ices. This book.

    Google Scholar 

  • Sandford, S.A., Allamandola, L. J., Tielens, A.G.G.M. and Valero, G.J. (1988) Laboratory-studies of the infrared spectral properties of CO in astrophysical ices. Astrophys. J., 329, pp. 498–510.

    Article  ADS  Google Scholar 

  • Sandford, S.A. and Allamandola, L.J. (1990) The physical and spectral properties of CO2 in astrophysical ice analogs. Astrophys. J., 355, pp. 357–372.

    Article  ADS  Google Scholar 

  • Sandford, S.A., Salama, F., Allamandola, L. J., Trafton, L.M., Lester, D.F. and Ramseyer, T.F. (1991) Laboratory studies of the newly discovered infrared band at 4705.2 cm-1 (2.125 microns) in the spectrum of Io: The tentative identification of CO2. Icarus, 91, pp. 125–144.

    Google Scholar 

  • Schaaf, J.W. and Williams, D. (1973) Optical constants of ice in the infrared. J. Opt. Soc. Am., 63, pp. 726–732.

    Article  ADS  Google Scholar 

  • Schmitt, B., Grim, R.J.A. and Greenberg, J.M. (1989a) Spectroscopy and Physico-Chemistry of CO:H2O and CO2:IH2O Ices. In Infrared Spectroscopy in Astronomy, Proc. 22nd Eslab Symposium, Salamanca. ESA Spec. Publ. SP-290, pp. 213–219.

    ADS  Google Scholar 

  • Schmitt, B., Greenberg, J.M. and Grim, R.J.A. (1989b) The temperature dependence of the CO infrared band strength in CO:H2O ices. Astrophys. J., 340, pp. L33–L36.

    Article  ADS  Google Scholar 

  • Schmitt, B., Quirico, E. and Lellouch, E. (1992). Near infrared spectra of potential solids at the surface of Titan. Proceedings Symposium on Titan, ESA Spec. Publ., SP-338, pp. 383–388.

    ADS  Google Scholar 

  • Schmitt, B., de Bergh, C, Lellouch, E., Maillard, J-P, Barbe A. and Douté, S. (1994) Identification of three absorption bands in the 2-μm. spectrum of Io. Icarus, 111, pp. 79–105.

    Article  ADS  Google Scholar 

  • Sill, G.S., Fink, U. and Ferraro, J.R. (1980) Absorption coefficients of solid NII3 from 50 to 7000 cm-1. J. Opt. Soc. Am., 70, pp. 724–739.

    Article  ADS  Google Scholar 

  • Smith, R.G., Robinson, G., Hyland, A.R. and Carpenter, G.L. (1994) Molecular ices as temperature indicators for interstellar dust: The 44 and 62 μm lattice features of H2O ice. Mon. Not. R. Astr. Soc, 271, p. 481.

    ADS  Google Scholar 

  • Spencer, J.R., Calvin, W.M. and Person, M.J. (1995) Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. J. Geophys. Res., E 100, pp. 19049–19056.

    Article  ADS  Google Scholar 

  • Stansberry, J.A., Pisano, D.J. and Yelle, R.V. (1996) The emissivity of ices on Triton and Pluto. Planet Space Sci., 44, pp. 945–955.

    Article  ADS  Google Scholar 

  • Stern, S.A., Weintraub, D.A. and Festou, M.C. (1993) Evidence for a low surface temperature on Pluto from millimeter-wave thermal emission measurements. Science, 261, pp. 1713–1716.

    Article  ADS  Google Scholar 

  • Strazzulla, G., Leto, G., Baratta, G.A. and Spinella, F. (1991) Ion irradiation experiments relevant to cometary physics. J. Geophys. Res., E 96, pp. 17547–17552.

    Article  ADS  Google Scholar 

  • Strazzulla, G. (1997) Chemistry of ice induced by bombardment with energetic charged particles. This book.

    Google Scholar 

  • Tempelmeyer, K.E. and Mills Jr. D.W. (1968) Refractive index of carbon dioxide cryodeposit. J. Appl. Phys., 39, pp. 2968–2969.

    Article  ADS  Google Scholar 

  • Toon, O.B., Tolbert, M.A., Koehler, B.G., Middlebrook, M. and Jordan, J. (1994) Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res., D 99, pp. 25631–25654.

    Article  ADS  Google Scholar 

  • Trotta, F. (1996) Détermination des constantes optiques de glaces dans l’infrarouge moyen et lointain, application aux grains du milieu interstellaire et des enveloppes circumstellaires. Thesis, LGGE — Université Joseph Fourier, Grenoble, France.

    Google Scholar 

  • Trotta, F. and Schmitt, B. (1996) Determination of the optical constants of solids in the mid infrared. In: The Cosmic Dust Connection (J.M. Greenberg ed.), Kluwer Acad. PubL, NATO ASI Series, C 487, pp. 179–184.

    Google Scholar 

  • Trotta, F. and Schmitt, B. (l997a) A new model for the determination of the optical constants of thin film solids. Appl. Spectrosc, submitted.

    Google Scholar 

  • Trotta, F. and Schmitt, B. (1997b) The optical constants of ices in the mid and far infrared ranges. I. NH3, CO, CO2, CH3OH, SO2 and H2S. Astron. Astrophys., in preparation.

    Google Scholar 

  • Tryka, K.A., Brown, R.H., Anicich, V., Cruikshank, D.P. and Owen, T.C. (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton. Science, 261, pp. 751–754.

    Article  ADS  Google Scholar 

  • Tryka, K.A., Brown, R.H. and Anicich, V. (1995) Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus, 116, pp. 409–414.

    Article  ADS  Google Scholar 

  • Van de Hulst, H.C. (1957) Light scattering by small particles. Dover Publ. Inc., New York.

    Google Scholar 

  • Verbiscer, A.J. and Helfenstein, P. (1997) Reflectance spectroscopy of icy surfaces. This book.

    Google Scholar 

  • Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave. Appl. Opt, 23, pp. 1206–1223.

    Article  ADS  Google Scholar 

  • Warren, S.G. (1986) Optical constants of carbon dioxide ice. Appl. Opt., 25, pp. 2650–2674.

    Article  ADS  Google Scholar 

  • Wood, B.E. and Smith, A.M. (1978) Infrared reflectance and refractive index of condensed gas films on cryogenic mirrors. Thermophys. and Spacecraft Therm. Contr., Progress in Astronautics and Aeronautics, 65, pp. 22–38.

    Google Scholar 

  • Wood, B.E. and Roux, J.A. (1982) Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. J. Opt. Soc. Am., 72, pp. 720–728.

    Article  ADS  Google Scholar 

  • Wood, B.E. and Roux, J.A. (1984) Infrared optical properties of thin CO2, NO, CH4, HCl, N2O, O2, N2, and Ar cryofilms. Spacecraft Contamination: Sources and Prevention, Progress in Astronautics and Aeronautics, 91, pp. 139–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmitt, B., Quirico, E., Trotta, F., Grundy, W.M. (1998). Optical Properties of Ices From UV to Infrared. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics