Advertisement

Optical Properties of Ices From UV to Infrared

  • B. Schmitt
  • E. Quirico
  • F. Trotta
  • W. M. Grundy
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Remote sensing of ices at the surfaces and in the atmospheres of system solar objects are the subject of increasing studies in the UV, visible and infrared ranges. The spectro-imagers and spectrophotometers aboard space probes will further expand these studies. One critical problem for the interpretation of the astronomical absorption and emission spectra is the availability of laboratory data on the optical properties of the relevant ices.

After a discussion of the different types of observations and their specific spectral ranges, we review the different types of laboratory measurements of the optical properties of ices and discuss the problem of optical constant calculation in each case.

The various physical parameters (i.e. phase, crystalline quality, temperature and thermal history, isotopes) that influence the spectra of pure ices are analyzed. Similarly, we discuss the optical properties of mixtures and their dependence on the type of mixture (solid solution, specific compound or multi-phase system) as well as on various physical parameters (temperature, composition, phase, thermodynamical state). A brief summary of the available optical properties of ices and mixtures of planetary interest is followed by an assessement of what is still unknown (or poorly known) in the field. Finally, we discuss the use of laboratory data in reflectance and emittance models.

Keywords

Guest Molecule Optical Constant Complex Refractive Index Multiphase System Solar System Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, L. and Moscovits, M. (1989) Chemistry and Physics of Matrix-Isolated Species. Elsevier Sciences, Amsterdam (North-Holland).Google Scholar
  2. Arhenkiel, R.K. (1971) Modified Kramers-Kronig analysis of optical spectra. J. Opt. Soc. Am., 61, pp. 1651–1655.ADSCrossRefGoogle Scholar
  3. Behringer, R.E. (1958) Number of single, double and triple clusters in a system containing two types of atoms. J. Chem. Phys., 29, pp. 537–539.ADSCrossRefGoogle Scholar
  4. Berland, B.S., Haynes, D.R., Foster, K.L., Tolbert, M.A., George, S.M. and Toon, O.B. (1994) Refractive indices of amorphous and crystalline HNO3/H2O films representative of polar stratospheric clouds. J. Phys. Chem., 98, pp. 4358–4364.CrossRefGoogle Scholar
  5. Bertie, J.E. and Morrison, M.M. (1980) The infrared spectra of the hydrates of ammonia, NH3.H2O and 2NH3.H2O at 95°K. J. Chem. Phys., 73, pp. 4832–4837.ADSCrossRefGoogle Scholar
  6. Bogani, F. and Schettino, V. (1978) Dipole-dipole interaction and internal vibrations in molecular crystals. J. Phys. C, 11, pp. 1275–1281.ADSCrossRefGoogle Scholar
  7. Bohn, R.B., Sandford, S.A., Allamandolla, L.J. and Cruikshank, D.P. (1994) Infrared spectroscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons. Icarus, 111, pp. 151–173ADSCrossRefGoogle Scholar
  8. Buffeteau, T. and Desbat, B. (1989) Thin-film optical constants determined from infrared reflectance and transmittance measurements. Appl. Spectrosc, 43, pp. 1027–1032.ADSCrossRefGoogle Scholar
  9. Califano, S., Schettino, V. and Neto, N. (1981) Lattice Dynamics of Molecular Crystals. Springer, Berlin.CrossRefGoogle Scholar
  10. Calvani, P., Cunsolo, S., Lupi, S. and Nucara, A. (1992) The near-infrared spectrum of solid CH4. J. Chem. Phys., 96, pp. 7372–7379ADSCrossRefGoogle Scholar
  11. Calvin, W.M. (1990) Additions and corrections to the absorption coefficients of CO2 ice: Application to the martian south polar cap. J. Geophys. Res., B 95, pp. 14743–14750.ADSCrossRefGoogle Scholar
  12. Calvin, W.M. and Clark, R.N. (1991) Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm. Icarus, 89, pp. 305–317.ADSCrossRefGoogle Scholar
  13. Cardini, G., Righini, R., Löwen, H.W. and Jödl, H.J. (1992) Sideband modeling in molecular crystals N2 and CO2. J. Chem. Phys.,96, pp. 5703–5711.ADSCrossRefGoogle Scholar
  14. Carr, B.R., Chadwick, B.M., Edwards, O.S., Long, D.A. and Wharton, F.C. (1980) The infrared activation of the N-N stretching vibration in nitrogen matrices. J. Mol. Struct., 62, pp. 291–295.ADSCrossRefGoogle Scholar
  15. Chamberland, A., Belzile, R. and Cabana, A. (1970) Infrared spectra and structure of methane-noble gas mixed crystals: Influence of temperature and methane concentration on the ν3 vibration band of methane. Can J. Chem., 48, pp. 1129–1139.ADSCrossRefGoogle Scholar
  16. Clapp, M.L. and Miller, R.E. (1993) Shape effects in the infrared spectrum of ammonia aerosols. Icarus, 105, pp. 529–536.ADSCrossRefGoogle Scholar
  17. Clapp, M.L., Miller, R.E. and Worsnop, D.R. (1995) Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra. J. Chem. Phys., 99, pp. 6317–6326.CrossRefGoogle Scholar
  18. Cruikshank, D.P., Brown, R.H., Calvin, W.M. and Roush, T.L. (1997a) Ices on the satellites of Jupiter, Saturn, and Uranus. This book.Google Scholar
  19. Cruikshank, D.P., Roush, T.L., Owen, T.C., Quirico, E. and de Bergh, C. (1997b) The surface compositions of Triton, Pluto, and Charon. This book.Google Scholar
  20. Decius, J.C. and Hexter, R.M. (1977) Molecular vibrations in crystals. McGraw-Hill, New York.Google Scholar
  21. Dello Russo, N. and Khanna, R.K. (1996) Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. Icarus, 123, pp. 366–395.ADSCrossRefGoogle Scholar
  22. DiLella, D.P. and Tevault, D.E. (1986) Infrared absorption of solid nitrogen activated by CO2, H2O, and C2N2. Chem. Phys. Lett., 126, pp. 38–42.ADSCrossRefGoogle Scholar
  23. Dones, L. (1997) The rings of the outer planets. This book.Google Scholar
  24. Dubost, H. (1976) Infrared absorption spectra of carbon monoxide in rare gas matrices. Chem. Phys., 12, pp. 139–151.ADSCrossRefGoogle Scholar
  25. Dubost, H., Charneau, R. and Harig, M. (1982) High-resolution diode laser spectroscopy of CO in solid N2: Effect of dipolar broadening on vibrational transitions. Chem. Phys., 69, pp. 389–405.ADSCrossRefGoogle Scholar
  26. Dunder, T. and Miller, R.E. (1990) The infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell. J. Chem. Phys., 93, pp. 3693–3703.ADSCrossRefGoogle Scholar
  27. Ewing, G.E. and Sheng, D.T. (1988) Infrared spectroscopy of CO2 ultrafine particles. J. Chem. Phys., 92, pp. 4063–4066.CrossRefGoogle Scholar
  28. Fily, M., Leroux, C, Lenoble, J. and Sergent, C. (1997) Terrestrial snow and ice studies from remote sensing in the solar spectrum and the thermal infrared. This book.Google Scholar
  29. Fink, U., and Sill, G.T. (1982) The infrared spectral properties of frozen volatiles. In: Comets. L.L. Wilkening (Ed)., University of Arizona Press, Tucson, pp. 164–202.Google Scholar
  30. Fleyfel, F. and Devlin, J.P. (1989) FT-IR spectra of CO2 clusters. J. Phys. Chem., 93, pp. 7292–7294.CrossRefGoogle Scholar
  31. Foggi, P. and Schettino, V. (1992) Phonon relaxation in molecular crystals: Theory and experiments. Riv. Nuovo Cim. Soc. Fisica, 7, pp. 1–82.CrossRefGoogle Scholar
  32. Forget, F. (1997) Mars CO2 ice polar caps. This book.Google Scholar
  33. Gaffey, S.J., McFadden, L.A., Nash, D. and Pieters, CM. (1993) Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In: Remote Geochemical analysis: elemantal and mineralogical composition. C.M. Pieters and P.A.J. Englert Eds, Cambridge Univ. Press, pp. 43–77.Google Scholar
  34. Gradie, J. and Veverka, J. (1984) Photometric properties of powdered sulfur. Icarus, 58, pp. 227–245.ADSCrossRefGoogle Scholar
  35. Grenfell, T.C. and Perovich, D.K. (1981) Radiation absorption coefficients of polycrystalline ice from 400–1400 nm. /. Geophys. Res., C 86, pp. 7447–7450.ADSCrossRefGoogle Scholar
  36. Grundy, W.M., Schmitt, B. and Quirico, E. (1993) The temperature dependent spectra of α and β nitrogen ice with application to Triton. Icarus, 105, pp. 254–258.ADSCrossRefGoogle Scholar
  37. Grundy, W.M., Quirico, E., Schmitt, B. (1997) The temperature dependent spectrum of methane ice between 14000 and 3100 cm-1 (0.7 to 3.2 (μm). Icarus, in preparation.Google Scholar
  38. Grundy, W.M. and Schmitt, B. (1997) The temperature-dependent near-infrared absorption spectrum of H2O ice.J. Geophys. Res. E., in preparation.Google Scholar
  39. Hansen, G.B. (1992) The spectral absorption of CO2 ice from 0.18 to 4.8 microns. Bull. Am. Astron. Soc, 24, p. 978.ADSGoogle Scholar
  40. Hansen, G.B. (1996a) The infrared absorption spectrum of carbon dioxide ice. PhD Thesis, Univ. of Washington.Google Scholar
  41. Hansen, G.B. (1996b) Spectral absorption coefficient of CO2 ice. 1. Experimental setup and technique. J. Geophys. Res., E, submitted.Google Scholar
  42. Hapke, B. and Graham, F. (1989). Spectral properties of condensed phases of disulfur monoxide, polysulfur oxide, and irradiated sulfur. Icarus, 79, pp. 47–55.ADSCrossRefGoogle Scholar
  43. Hapke, B., Wells, E., Wagner, J. and Partlow, W. (1981). Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2. Icarus, 47, pp. 361–367.Google Scholar
  44. Hapke, B.W. (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  45. Howell, R.R., Nash, D.B., Geballe, T.R. and Cruikshank, D.P. (1989). High-resolution infrared spectroscopy of Io and possible surface materials. Icarus, 78, pp. 27–37.ADSCrossRefGoogle Scholar
  46. Hudgins, D.M., Sandford, S.A., Allamandola, L.J. and Tielens, A.G.G.M. (1993) Mid-and far-infrared spectroscopy of ices: Optical constants and integrated absorbances. Astrophys. J. Suppl. Ser., 86, pp. 713–870.ADSCrossRefGoogle Scholar
  47. Hudson, R.L. and Moore, M.H. (1993) Far-infrared investigations of a methanol clathrate hydrate: Implications for astronomical observations. Astrophys. J., 404, pp. L29–32.ADSCrossRefGoogle Scholar
  48. Irvine, W.M. and Pollack, J.B. (1968) Infrared optical properties of water and ice spheres. Icarus, 8, pp. 324–360.ADSCrossRefGoogle Scholar
  49. Jenniskens, P. and Blake, D.F. (1996) Crystallization of amorphous water ice in the solar system. Astrophys. J., 473, pp. 1104–1113.ADSCrossRefGoogle Scholar
  50. Jödl, H.J., Loewen, W. and Griffith, D. (1987) FTIR-spectra of solid O2, N2, and CO. Solid State Commun., 61, pp. 503–506.CrossRefGoogle Scholar
  51. Jödl, H.J. (1989) Solid-state aspects of matrices. Chemistry and Physics of Matrix-Isolated Species (L. Andrews and M. Moskovits, eds), chap. 12.Google Scholar
  52. Johnson, B.R. and Atreya, S.K. (1996) Feasibility of determining the composition of planetary ices by far infrared observations: Application to matian cloud and surface ices. Icarus, 119, pp. 405–426.ADSCrossRefGoogle Scholar
  53. Johnson, B.R. (1997) Sputtering and desorption from icy surfaces. This book.Google Scholar
  54. Kargel, J.S. and Lunine, J.I. (1997) Clathrates hydrates on Earth and in the solar system. This book.Google Scholar
  55. Kerker, M. (1969) The scattering of light and other electromagnetic radiations. Academic Press Inc..Google Scholar
  56. Khanna, R.K., Perera-Jarmer, MA. and Ospina, M.J. (1987) Vibrational infrared and Raman spectra of dicyanoacetylene. Spectrochim. Acta, A 43, pp. 421–425.ADSGoogle Scholar
  57. Khanna, R.K., Zhao, G., Ospina, M.J. and Pearl, J.C. (1988a) Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infra-red spectra. Spectrochim. Acta, A 44, pp. 581–586.ADSGoogle Scholar
  58. Khanna, R.K., Ospina, M.J. and Zhao, G. (1988b) Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2. Icarus, 74, pp. 527–535.ADSCrossRefGoogle Scholar
  59. Khare, B.N., Thompson, W.R., Sagan, C, Arakawa, E.T., Bruel, C, Judish, J.P., Khanna, R.K. and Pollack, J.B. (1990) Optical constants of solid methane. In: First International Conference on Laboratory Research or Planetary Atmospheres, edited by K. Fox et al., NASA Conf. Publ., 3077, pp. 327–339.Google Scholar
  60. Khare, B.N., Thompson, W.R., Cheng, L., Chyba, C, Sagan, C, Arakawa, E.T., Meisse, C. and Tuminello, P.S. (1993) Production and optical constants of ice tholin from charged particle irradiation of (1:6) C2H6/H2O at 77 K. Icarus, 103, pp. 290–300.ADSCrossRefGoogle Scholar
  61. Kouchi, A. and Kuroda, T. (1990) Amorphization of cubic ice by ultraviolet irradiation. Nature, 344, pp. 134–135.ADSCrossRefGoogle Scholar
  62. Kou, L., Labrie, D. and Chylek, P. (1993) Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range. Appl. Opt., 32, pp. 3531–3540.ADSCrossRefGoogle Scholar
  63. Landau, A., Allin, E.J. and Welsh, H.L. (1962) The absoption spectrum of solid oxygen in the wavelength region from 12,000 Åto 3300 Å. Spectrochem. Acta, 18, pp. 1–19.ADSCrossRefGoogle Scholar
  64. Legay, F., (1977) Vibrational relaxation in matrices. In Chemical and Biochemical applications of lasers. (C.B. Moore ed.), Academic Press, 2, p. 43.Google Scholar
  65. Legay, F. and Legay-Sommaire, N. (1982) Vibrational absorption spectrum of solid CO in the first harmonic region. Two-phonon transition. Chem. Phys., 65, pp. 49–57.ADSCrossRefGoogle Scholar
  66. Lepault, J., Freeman, R. and Dubochet, J. (1983) J. Microsc, 132. RP3.CrossRefGoogle Scholar
  67. Löwen, H.W., Bier, K.D. and Jödl, H.J. (1990) Vibron-phonon exitations in the molecular crystals N2, O2 and CO by Fourier transform infrared and Raman studies. J. Chem. Phys., 93, pp. 8565–8575.ADSCrossRefGoogle Scholar
  68. Lunine, J.I. and Stevenson, D.J. (1985) Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser., 58, pp. 493–531.ADSCrossRefGoogle Scholar
  69. Martonchik, J.V., Orton, G.S. and Appleby, J.F. (1984). Optical properties of NH3 ice from the far infrared to the near ultraviolet. Appl. Opt., 23, pp. 541–547.ADSCrossRefGoogle Scholar
  70. Masterson, C.M. and Khanna, R.K. (1990) Absorption intensities and complex refractive indices of crystalline HCN, HC3N, and C4N2 in the infrared region. Icarus, 83, pp. 83–92.ADSCrossRefGoogle Scholar
  71. McPhedran, R.C., Botten, L.C., McKenzie, D.R. and Netterfield, R.P. (1984) Unambiguous determination of optical constants of absorbing films by reflectance and transmittance measurements. Appl. Opt., 23, pp. 1197–1205.ADSCrossRefGoogle Scholar
  72. Moore, M.H. and Hudson, R.L. (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation. Astrophys. J., 401, pp. 353–360.ADSCrossRefGoogle Scholar
  73. Moses, J.I. and Nash, D.B. (1991) Phase transformations and the spectral reflectance of solid sulfur: Can metastable sulfur allotropes exist on Io? Icarus, 89, pp. 277–304.ADSCrossRefGoogle Scholar
  74. Mukai, T. and Krätschmer, W. (1986) Optical constants of the mixture of ices. Earth Moon Planets, 36, pp. 145–155.ADSCrossRefGoogle Scholar
  75. Nash, D.B. and Howell, R.R. (1989) Hydrogen sulfide on Io: evidence from telescopic and laboratory infrared spectra. Science, 244, pp. 454–457.ADSCrossRefGoogle Scholar
  76. Nash, D. (1994) On Io’s 2.788-μm band: Origin by SO2 or H2O? Icarus, 107, pp. 418–421.ADSCrossRefGoogle Scholar
  77. Nash, D.B. and Betts, B.H. (1995) Laboratory infrared spectra (2.3–23 μm) of SO2 phases: Application to Io surface analysis. Icarus, 117, pp. 402–419.ADSCrossRefGoogle Scholar
  78. Nash, D.B. and Betts, B.H. (1996) Ices on Io: Composition and texture. This book.Google Scholar
  79. Nelander, B. (1976) On the infrared spectrum of a carbon dioxide containing nitrogen matrix. Chem. Phys. Lett., 42, pp. 187–189.ADSCrossRefGoogle Scholar
  80. Nelander, B. (1980) Infrared spectrum of the water formaldehyde complex in solid argon and solid nitrogen. J. Chem. Phys., 72, pp. 77–84.ADSCrossRefGoogle Scholar
  81. Nelson, R.M. and Smythe, W.D. (1986) Spectral reflectance of solid sulfur trioxide (0.25–5.2 μm): Implication for Jupiter’s satellite Io. Icarus, 66, pp. 181–187.ADSCrossRefGoogle Scholar
  82. Nelson, R.M., Smythe, W.D., Hapke, B.W. and Cohen, A.J. (1990) On the effect of X rays on the color of elemental sulfur: Implications for Jupiter’s Satellite Io. Icarus, 85, pp. 326–334.ADSCrossRefGoogle Scholar
  83. Oehler, A. (1996) Experimentelle und theoretische Untersuchung der goniospek-trometrischen eigenschaften regolithartiger materialien in den specktralbereichen UV, VIS and NIR. Thesis, Berlin, Germany.Google Scholar
  84. Ospina, M., Zhao, G. and Khanna, R.K. (1988) Absolute intensities and optical constants of crystalline C2N2 in the infrared region. Spectrochim. Acta, A 44, pp. 23–26.ADSGoogle Scholar
  85. Palumbo, M.E. and Strazzulla, G. (1993) The 2140 cm-1 band of frozen CO: Laboratory experiments and astrophysical applications. Astron. Astrophys., 269, pp. 568–580.ADSGoogle Scholar
  86. Pearl, J. (1988) A review of Voyager IRIS results on Io. EOS trans. A G U abstract 32-05. p. 394.Google Scholar
  87. Pearl, J., Ngoh, M., Ospina, M. and Khanna, R. (1991) Optical constants of solid methane and ethane from 10000 to 450 cm-1. J. Geoph. Res., 96, pp. 477–482ADSGoogle Scholar
  88. Pelletier, E. (1991) Methods for determining optical parameters of thin films. In: Handbook of Optical Constants of Solids II (E.D. Palik Ed.), Academic Press, pp. 57–73.Google Scholar
  89. Perovich, D.K. and Govoni, J.W. (1991) Absorption coefficients of ice from 250 to 400 nm. Geophys. Res. Lett., 18, pp. 1233–1235.ADSCrossRefGoogle Scholar
  90. Quirico, E. (1995) Etudes spectroscopiques proche infrarouges de solides moléculaires. Application l’étude des surfaces glacées de Triton et Pluton. Thesis, LGGE — Université Joseph Fourier, Grenoble, France.Google Scholar
  91. Quirico, E., Schmitt, B., Bini, R. and Salvi, P.R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2:CH4 mixtures. Planet. Space Sci., 44, pp. 973–986.ADSCrossRefGoogle Scholar
  92. Quirico, E. and Schmitt, B. (1997a) Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implication for Triton and Pluto. Icarus, 127, pp. 354–378.ADSCrossRefGoogle Scholar
  93. Quirico, E. and Schmitt, B. (1997b) A spectroscopic study of CO diluted in N2 ice: Applications for Triton and Pluto. Icarus, 128, in press.Google Scholar
  94. Rollet, A.P. and Vuillard, G. (1956) Sur un nouvel hydrate de l’ammoniac. C. R. Acad. Sci., 243, pp. 383–386.Google Scholar
  95. Sack, N.J., Johnson, R.E., Boring, J.W. and Baragiola, R.A. (1992) The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus, 100, pp. 534–540.ADSCrossRefGoogle Scholar
  96. Salama, F., Allamandola, L.J., Witteborn, F.C., Cruikshank, D.P., Sandford, S.A. and Bregman, J.D. (1990) The 2.5–5.0 μm spectra of Io: Evidence for H2S and H2O frozen in SO2. Icarus, 83, pp. 66–82.ADSCrossRefGoogle Scholar
  97. Salama, F., Allamandola, L.J., Sandford, S.A., Bregman, J.D., Witteborn, F.C. and Cruikshank, D.P. (1994) Is H2O present on Io? The detection of a new strong band near 3590 cm-1 (2.79 μm). Icarus, 107, pp. 413–417.ADSCrossRefGoogle Scholar
  98. Salisbury, J.W. (1993) Mid-infrared spectroscopy: Laboratory data. In: Remote Geo-chemical analysis: Elemantal and mineralogical composition. C.M. Pieters and P.A.J. Englert Eds, Cambridge Univ. Press, pp. 79–98.Google Scholar
  99. Samuelson, R. (1997) Atmospheric ices. This book.Google Scholar
  100. Sandford, S.A., Allamandola, L. J., Tielens, A.G.G.M. and Valero, G.J. (1988) Laboratory-studies of the infrared spectral properties of CO in astrophysical ices. Astrophys. J., 329, pp. 498–510.ADSCrossRefGoogle Scholar
  101. Sandford, S.A. and Allamandola, L.J. (1990) The physical and spectral properties of CO2 in astrophysical ice analogs. Astrophys. J., 355, pp. 357–372.ADSCrossRefGoogle Scholar
  102. Sandford, S.A., Salama, F., Allamandola, L. J., Trafton, L.M., Lester, D.F. and Ramseyer, T.F. (1991) Laboratory studies of the newly discovered infrared band at 4705.2 cm-1 (2.125 microns) in the spectrum of Io: The tentative identification of CO2. Icarus, 91, pp. 125–144.Google Scholar
  103. Schaaf, J.W. and Williams, D. (1973) Optical constants of ice in the infrared. J. Opt. Soc. Am., 63, pp. 726–732.ADSCrossRefGoogle Scholar
  104. Schmitt, B., Grim, R.J.A. and Greenberg, J.M. (1989a) Spectroscopy and Physico-Chemistry of CO:H2O and CO2:IH2O Ices. In Infrared Spectroscopy in Astronomy, Proc. 22nd Eslab Symposium, Salamanca. ESA Spec. Publ. SP-290, pp. 213–219.ADSGoogle Scholar
  105. Schmitt, B., Greenberg, J.M. and Grim, R.J.A. (1989b) The temperature dependence of the CO infrared band strength in CO:H2O ices. Astrophys. J., 340, pp. L33–L36.ADSCrossRefGoogle Scholar
  106. Schmitt, B., Quirico, E. and Lellouch, E. (1992). Near infrared spectra of potential solids at the surface of Titan. Proceedings Symposium on Titan, ESA Spec. Publ., SP-338, pp. 383–388.ADSGoogle Scholar
  107. Schmitt, B., de Bergh, C, Lellouch, E., Maillard, J-P, Barbe A. and Douté, S. (1994) Identification of three absorption bands in the 2-μm. spectrum of Io. Icarus, 111, pp. 79–105.ADSCrossRefGoogle Scholar
  108. Sill, G.S., Fink, U. and Ferraro, J.R. (1980) Absorption coefficients of solid NII3 from 50 to 7000 cm-1. J. Opt. Soc. Am., 70, pp. 724–739.ADSCrossRefGoogle Scholar
  109. Smith, R.G., Robinson, G., Hyland, A.R. and Carpenter, G.L. (1994) Molecular ices as temperature indicators for interstellar dust: The 44 and 62 μm lattice features of H2O ice. Mon. Not. R. Astr. Soc, 271, p. 481.ADSGoogle Scholar
  110. Spencer, J.R., Calvin, W.M. and Person, M.J. (1995) Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. J. Geophys. Res., E 100, pp. 19049–19056.ADSCrossRefGoogle Scholar
  111. Stansberry, J.A., Pisano, D.J. and Yelle, R.V. (1996) The emissivity of ices on Triton and Pluto. Planet Space Sci., 44, pp. 945–955.ADSCrossRefGoogle Scholar
  112. Stern, S.A., Weintraub, D.A. and Festou, M.C. (1993) Evidence for a low surface temperature on Pluto from millimeter-wave thermal emission measurements. Science, 261, pp. 1713–1716.ADSCrossRefGoogle Scholar
  113. Strazzulla, G., Leto, G., Baratta, G.A. and Spinella, F. (1991) Ion irradiation experiments relevant to cometary physics. J. Geophys. Res., E 96, pp. 17547–17552.ADSCrossRefGoogle Scholar
  114. Strazzulla, G. (1997) Chemistry of ice induced by bombardment with energetic charged particles. This book.Google Scholar
  115. Tempelmeyer, K.E. and Mills Jr. D.W. (1968) Refractive index of carbon dioxide cryodeposit. J. Appl. Phys., 39, pp. 2968–2969.ADSCrossRefGoogle Scholar
  116. Toon, O.B., Tolbert, M.A., Koehler, B.G., Middlebrook, M. and Jordan, J. (1994) Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res., D 99, pp. 25631–25654.ADSCrossRefGoogle Scholar
  117. Trotta, F. (1996) Détermination des constantes optiques de glaces dans l’infrarouge moyen et lointain, application aux grains du milieu interstellaire et des enveloppes circumstellaires. Thesis, LGGE — Université Joseph Fourier, Grenoble, France.Google Scholar
  118. Trotta, F. and Schmitt, B. (1996) Determination of the optical constants of solids in the mid infrared. In: The Cosmic Dust Connection (J.M. Greenberg ed.), Kluwer Acad. PubL, NATO ASI Series, C 487, pp. 179–184.Google Scholar
  119. Trotta, F. and Schmitt, B. (l997a) A new model for the determination of the optical constants of thin film solids. Appl. Spectrosc, submitted.Google Scholar
  120. Trotta, F. and Schmitt, B. (1997b) The optical constants of ices in the mid and far infrared ranges. I. NH3, CO, CO2, CH3OH, SO2 and H2S. Astron. Astrophys., in preparation.Google Scholar
  121. Tryka, K.A., Brown, R.H., Anicich, V., Cruikshank, D.P. and Owen, T.C. (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton. Science, 261, pp. 751–754.ADSCrossRefGoogle Scholar
  122. Tryka, K.A., Brown, R.H. and Anicich, V. (1995) Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus, 116, pp. 409–414.ADSCrossRefGoogle Scholar
  123. Van de Hulst, H.C. (1957) Light scattering by small particles. Dover Publ. Inc., New York.Google Scholar
  124. Verbiscer, A.J. and Helfenstein, P. (1997) Reflectance spectroscopy of icy surfaces. This book.Google Scholar
  125. Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave. Appl. Opt, 23, pp. 1206–1223.ADSCrossRefGoogle Scholar
  126. Warren, S.G. (1986) Optical constants of carbon dioxide ice. Appl. Opt., 25, pp. 2650–2674.ADSCrossRefGoogle Scholar
  127. Wood, B.E. and Smith, A.M. (1978) Infrared reflectance and refractive index of condensed gas films on cryogenic mirrors. Thermophys. and Spacecraft Therm. Contr., Progress in Astronautics and Aeronautics, 65, pp. 22–38.Google Scholar
  128. Wood, B.E. and Roux, J.A. (1982) Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. J. Opt. Soc. Am., 72, pp. 720–728.ADSCrossRefGoogle Scholar
  129. Wood, B.E. and Roux, J.A. (1984) Infrared optical properties of thin CO2, NO, CH4, HCl, N2O, O2, N2, and Ar cryofilms. Spacecraft Contamination: Sources and Prevention, Progress in Astronautics and Aeronautics, 91, pp. 139–161.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • B. Schmitt
    • 1
  • E. Quirico
    • 1
  • F. Trotta
    • 1
  • W. M. Grundy
    • 1
    • 2
  1. 1.Laboratoire de Glaciologie et Géophysique de l’Environnement Centre National de la Recherche ScientifiqueGrenoble/Saint Martin d’HèresFrance
  2. 2.Lowell ObservatoryFlagstaffUSA

Personalised recommendations