Advertisement

Reflectance Spectroscopy of Icy Surfaces

  • A. Verbiscer
  • P. Helfenstein
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Reflectance spectroscopy provides much of our knowledge about the compositions and physical properties of planetary, satellite, and asteroid surfaces. Two complementary aspects of reflectance spectroscopy are exploited in studies of icy satellites and other bodies. One approach, spectroscopic analysis, derives information about surface composition from variations in the intensity of reflected light with wavelength (usually from ultraviolet to near-infrared wavelengths, about 0.3 — 4.0μm); the other, photometric analysis, estimates surface physical characteristics from the way reflected light varies with illumination and viewing geometry. The foundation of spectroscopic analysis is that many minerals selectively absorb light at specific, diagnostic wavelengths. By comparing absorption bands in spectra of icy satellites to those seen in laboratory spectra of candidate regolith-forming materials, we now know that H2O is the dominant icy constituent in the regoliths of the icy satellites of Jupiter, Saturn, and Uranus and is present on the surface of Pluto’s moon, Charon. Ices of N2, CH4, and CO cover the surfaces of Triton and Pluto (CO2 ice is also present on Triton). Excellent current reviews describing spectroscopic analysis of surface ices on outer solar system bodies are published elsewhere (e.g. Roush et al. 1995, Cruik-shank and Brown 1993) as well as in this book (see chapters by Cruikshank et al).

Keywords

Phase Function Reflectance Spectroscopy Lunar Regolith Planetary Surface Opposition Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, S., Goswami, J., Lai, D., Patel, P. and Rao, M. (1975) Lunar regolith gas rich meteorites: Characterization based on particle tracks and grain-size distribution. Proc. Lunar sci. Conf. 6th, pp. 3509–3526.Google Scholar
  2. Bowell, E., Hapke, B., Domingue, D., Lumme, K., Peltoniemi, J., and Harris, A. (1989) Application of photometric models to asteroids. In: Asteroids II, Binzel, R., Gehrels, T. and Matthews, M., Eds. (pp. 524–556). Tucson: University of Arizona Press.Google Scholar
  3. Buratti, B.J. (1985) Application of a radiative transfer model to bright icy satellites. Icarus, 61, pp. 208–217.ADSCrossRefGoogle Scholar
  4. Buratti, B.J. (1991) Ganymede and Callisto: Surface textural dichotomies and photometric analysis. Icarus, 92, pp. 312–323.ADSCrossRefGoogle Scholar
  5. Buratti, B.J., Goguen, J., Gibson, J., and Mosher, J. (1994) Historical photometric evidence for volatile migration on Triton. Icarus 110, pp. 303–314.ADSCrossRefGoogle Scholar
  6. Buratti, B.J. and Golombek, M. (1988). Europa: Geologic implications of spectrophotometry. Icarus, 75, pp. 113–126.ADSCrossRefGoogle Scholar
  7. Buratti, B.J. and Mosher, J. (1995) The dark side of Iapetus: Additional evidence for exogenous origin. Icarus, 115, pp. 219–227.ADSCrossRefGoogle Scholar
  8. Buratti, B.J. and Veverka, J. (1985) Photometry of rough planetary surfaces: The role of multiple scattering. Icarus, 64, pp. 320–328.ADSCrossRefGoogle Scholar
  9. Buratti, B.J., Wong, F., and Mosher, J. (1990) Surface properties and photometry of the Uranian satellites. Icarus, 84, pp. 203–214.ADSCrossRefGoogle Scholar
  10. Calvin, W.M. and Clark, R.N. (1991) Modeling the reflectance spectrum of Callisto 0.25–4.1μm Icarus, 89, pp. 305–317.ADSCrossRefGoogle Scholar
  11. Calvin, W.M., Clark, R.N., Brown, R.H., and Spencer, J.R. (1995) Spectra of the icy Galilean satellites from 0.2 to 5 μm: A compilation, new observations, and a recent summary. J. Geophys. Res, 100, pp. 19041–19048.ADSCrossRefGoogle Scholar
  12. Carrier, W.D., Mitchell, J. and Mahmood, A. (1974) Lunar soil density and porosity Proc. Lunar sci. Conf. 5th, Geochim. et Cosmochim. Acta, pp. 2361–2364.Google Scholar
  13. Chandrasekhar, S. (1960) Radiative Transfer. New York: Dover.Google Scholar
  14. Cintala, M. J. and Hörz, F. (1990) Regolith evolution in the laboratory: Scaling dissimilar comminution experiments. Meteoritics, 25, pp. 27–40.ADSGoogle Scholar
  15. Cintala, M.J. and Hörz, F. (1992) An experimental evaluation of mineral-specific comminution. Meteoritics, 27, pp. 395–403.ADSGoogle Scholar
  16. Cruikshank, D.P. and Brown, R.H. (1993) Remote sensing of ices and ice-mineral mixtures in the outer solar system. In: Remote Geochemical Analysis: Elemental and Mineralogical Composition (Pieters, C.M. and Englert, P.A.J. Eds.) Cambridge Univ. Press, NY., p. 455.Google Scholar
  17. Dollfus, A. (1955) Study of planets by means of the polarization of their light. NASA TT F-188.Google Scholar
  18. Dollfus, A. (1975) Optical polarimetry of the Galilean satellites of Jupiter. Icarus, 25, pp. 416–435.ADSCrossRefGoogle Scholar
  19. Dollfus, A. (1979) Optical reflectance polarimetry of Saturn globe and rings 1. Measurements on B ring. Icarus, 37, pp. 404–419.ADSCrossRefGoogle Scholar
  20. Dollfus, A. (1985) Photopolarimetric sensing of planetary surfaces. Advances in Space Res., 5, pp. 47–58.ADSCrossRefGoogle Scholar
  21. Dollfus, A. and Wolff, M. (1990) Calculating Rayleigh scattering from particulate surfaces and Saturn’s rings. Appl. Opt., 29, pp. 1496–1502.ADSCrossRefGoogle Scholar
  22. Domingue, D.L., Hapke, B.W., Lockwood, G.W. and Thompson, D.T. (1991) Europa’s phase curve: Implications for surface structure. Icarus, 90, pp. 30–42.ADSCrossRefGoogle Scholar
  23. Domingue, D., Hapke, B., Lockwood, G. and Thompson D.T. (1992) Disk-resolved photometric analysis of Europan terrains. Icarus 99, pp. 70–81.ADSCrossRefGoogle Scholar
  24. Domingue, D.L., Lockwood, G.W. and Thompson, D.T. (1995) Surface textural properties of icy satellites: A comparison between Europa and Rhea. Icarus, 115, pp. 228–249.ADSCrossRefGoogle Scholar
  25. Efford, N.D. (1989) Integral photometry of Phobos using Hapke’s equation. Lunar and Planet. sci., 20, pp. 262–263.ADSGoogle Scholar
  26. Egan, W.G., Veverka, J., Noland, M. and Higelman, T. (1973) Photometric and polarimetric properties of the Bruderheim chondritic meteorite. Icarus, 19, pp. 358–371.ADSCrossRefGoogle Scholar
  27. Geake, J.E. and Dollfus, A. (1986) Planetary surface texture and albedo from parameter plots of optical polarization. Mon. Not. R. Ast. Soc. 218, pp. 75–91.ADSGoogle Scholar
  28. Gehreis, T. (1977) Picture of Ganymede. In: Planetary Satellites, (J.A. Burns, Ed.), Univ. Arizona Press, Tucson, pp. 406–411.Google Scholar
  29. Goguen, J. (1981) A Theoretical and Experimental Investigation of the Photometric Functions of Particulate Surfaces. Ph.D. thesis, Cornell Univ., Ithaca, NY.Google Scholar
  30. Goguen, J. (1995a) A quantitative test of the applicability of independent scattering to high albedo planetary regoliths. Icarus, submitted.Google Scholar
  31. Goguen, J. (1995b) Investigation of Callisto’s unusual photometric properties using a “phase cube” of Voyager images. Lunar and Planet. sci. 26, pp. 471–427.ADSGoogle Scholar
  32. Gold, T., O’Leary, B.T. and Campbell, M. (1971) Some physical properties of Apollo 12 lunar samples. Proc. Lunar sci. Conf. 2nd, pp. 2173–2181.Google Scholar
  33. Hansen, J.E. (1969) Radiative transfer by doubling very thin layers. Astrophys. J., 155, pp. 565–573.ADSCrossRefGoogle Scholar
  34. Hapke, B.W. (1981) Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res., 86, pp. 3039–3054.ADSCrossRefGoogle Scholar
  35. Hapke, B.W. (1984) Bidirectional reflectance spectroscopy. 3. Correction for macroscopic roughness. Icarus, 59, pp. 41–59.ADSCrossRefGoogle Scholar
  36. Hapke, B.W. (1986) Bidirectional reflectance spectroscopy. 4. Extinction and the opposition effect. Icarus, 67, pp. 264–280.ADSCrossRefGoogle Scholar
  37. Hapke, B.W. (1990) Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 67, pp. 264–280.ADSCrossRefGoogle Scholar
  38. Hapke, B.W. (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.Google Scholar
  39. Hapke, B.W., Nelson, R.M., Smythe, W.D. (1993) The opposition effect of the moon — The contribution of coherent backscatter. Science, 260, pp. 509–511.ADSCrossRefGoogle Scholar
  40. Hapke, B.W., Nelson, R.M., Smythe, W..D., Horn, L., Gharakanian, V., and Herrera P. (1995) Studies of the opposition effect and negative polarization with the JPL photopolarimeters. Lunar and Planet. sci. 26, pp. 549–550.ADSGoogle Scholar
  41. Helfenstein, P. (1983) Geomorphic structures on Europa: A new method for the recognition of features near the limit of resolution. Lunar and Planet. sci., 14, pp. 356–357.Google Scholar
  42. Helfenstein, P. (1986) Derivation and Analysis of Geological Constraints on the Emplacement and Evolution of Terrains on Ganymede from Applied Differential Photometry. Ph.D. thesis, Brown University, Providence RI.Google Scholar
  43. Helfenstein, P. (1988) The geological interpretation of photometric surface roughness. Icarus, 73, pp. 462–481.ADSCrossRefGoogle Scholar
  44. Helfenstein, P. and Cook, A.F. (1984) Active venting on Europa? Analysis of a transient bright surface feature. Lunar and Planet. sci., 15, pp. 339–340.ADSGoogle Scholar
  45. Helfenstein, P., Hillier, J. and Veverka, J. (1995a) Albedo dependence of particle phase functions for planetary regoliths. Icarus, submitted.Google Scholar
  46. Helfenstein, P., Hillier, J., Weitz, C. and Veverka, J. (1991) Oberon: Color photometry from Voyager and its geological implications. Icarus, 90, pp. 14–29.ADSCrossRefGoogle Scholar
  47. Helfenstein, P., Thomas, P.C. and Veverka, J. (1989) Evidence from Voyager II photometry for early resurfacing of Umbriel. Nature, 338, pp. 324–326.ADSCrossRefGoogle Scholar
  48. Helfenstein, P. and Veverka, J. (1987) Photometric properties of lunar terrains derived from Hapke’s equation. Icarus, 72 pp. 342–357.ADSCrossRefGoogle Scholar
  49. Helfenstein, P. and Veverka, J. (1989) Physical characterization of asteroid surfaces from photometric analysis. In: Asteroids II(R. Binzel, T. Gehrels, and M. Matthews, Eds.), Univ. Ariz. Press, Tucson. 1258 pp.Google Scholar
  50. Helfenstein, P., Veverka, J. and Hillier, J. (1995b) Monochromatic photometry of the Moon and the lunar opposition effect. Icarus, submitted.Google Scholar
  51. Helfenstein, P., Veverka, J. and Hillier, J. (1995c) The wavelength dependence of lunar photometric properties. Icarus, submitted.Google Scholar
  52. Helfenstein, P., Veverka, J., McCarthy, D., Lee, P. and Hillier, J. (1992) Large quasi-circular features beneath frost on Triton. Science 255, pp. 824–826.ADSCrossRefGoogle Scholar
  53. Helfenstein, P., Veverka, J. and Thomas, P.C. (1988) Uranus satellites: Hapke parameters from Voyager disk-integrated photometry. Icarus, 74, pp. 231–239.ADSCrossRefGoogle Scholar
  54. Helfenstein, P., Veverka, J., Thomas, P.C., Simonelli, D., Klaasen, K., Johnson, T.V., Fanale, F., Granahan, J., and McEwen A.S. (1996) Galileo photometry of Asteroid 243 Ida. Icarus, 120, pp. 48–65.ADSCrossRefGoogle Scholar
  55. Helfenstein, P., Veverka, J., Thomas, P., Simonelli, D., Lee, P., Klaasen, K., Johnson, T., Brenemen, H., Head, J., Murchie, S., Fanale, F., Robinson, M., Clark, B., Granahan, J., Garbeil, H., McEwen, A., Davies, M., Neukum, G., Mottola, S., Wagner, R., Belton, M., Chapman, C, and Pilcher, C. (1994) Galileo Photometry of Asteroid 951 Gaspra, Icarus, 107, pp. 37–60.ADSCrossRefGoogle Scholar
  56. Henyey, C. and Greenstein, J. (1941) Diffuse radiation in the galaxy. Astrophys. J., 93, pp. 70–83.ADSCrossRefGoogle Scholar
  57. Hillier, J. (1993) Voyager Photometry of Triton. Ph.D. thesis, Cornell University, Ithaca NY.Google Scholar
  58. Hillier, J., Helfenstein, P. and Veverka, J. (1995) Latitude variations of the polar caps on Ganymede Icarus), submitted.Google Scholar
  59. Hillier, J., Veverka, J. and Helfenstein, P. (1991) The wavelength dependence of Triton’s lightcurve. J. Geophys. Res. (Suppl) 96, pp. 19211–19215.ADSCrossRefGoogle Scholar
  60. Hillier, J., Veverka, J., Helfenstein, P. and Lee, P. (1994) Photometric diversity of terrains on Triton. Icarus, 109, pp. 296–312.ADSCrossRefGoogle Scholar
  61. Houston, W.N., Hovland, H.J., Mitchell, J.K. and Namiq, L.I. (1972) Lunar soil porosity and its variation estimated from footprints and boulder tracks. Proc. Lunar Planet. sci. Conf. 3rd, Geochim. et Cosmochim. Ada, pp. 3255–3263.Google Scholar
  62. Huffman, P.J. (1970) Polarization of light scattered by ice crystals. /. Atmos. Sei, 27, 1207–1208.ADSCrossRefGoogle Scholar
  63. Irvine, W. (1965) Multiple scattering by large yaxiicles.Astrophys. J., 142, pp. 1563–1572.ADSCrossRefGoogle Scholar
  64. Jacobowitz, H. (1970) Emission, scattering and absorption of radiation in cirrus cloud layers. Ph.D. thesis, M.I.T, Cambridge, MA.Google Scholar
  65. Jacobowitz, H. (1971) A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals. J. Quant. Spectros. RadiÅt. Transfer, 11, pp. 691–695.ADSCrossRefGoogle Scholar
  66. Johnson, P.E., Kemp, J.C., King, R., and Barbour, M.S. (1980) New results from optical polarimetry of Saturn’s rings. Nature, 283, pp. 146–149.ADSCrossRefGoogle Scholar
  67. Kattawar, G. (1975) A three parameter analytic phase function for multiple scattering calculations. J. Quant. Spectr. Rad. Trans., 15, pp. 839–849.ADSCrossRefGoogle Scholar
  68. Kolesov, A.K. (1972) Reflection and transmission of light by a semi-infinite atmosphere for anisotropic scattering. Trudy Astron. Obs. Leningrad Gos. Univ., 29.Google Scholar
  69. Kolokolova, L.O. (1990) Dependence of polarization on optical and structural properties of the surfaces of atmosphereless bodies. Icarus, 84, pp. 305–314.ADSCrossRefGoogle Scholar
  70. Kolokolova, L.O., Mishchenko, M.I., and Wolff, M. (1993) On the negative polarization of light scattered by subwavelength regolithic grains. Mon. Not. R. Astron. Soc, 260, pp. 550–552.ADSGoogle Scholar
  71. Lane, A.L, Nelson, R.M. and Matson, D.L. (1981) Evidence for sulphur implantation in Europa’s UV absorption band. Nature, 292, pp. 38–39.ADSCrossRefGoogle Scholar
  72. Lee, P., Helfenstein, P., Veverka, J. and McCarthy, D. (1992) Anomalous-scattering region on Triton. Icarus, 99, pp. 82–97.ADSCrossRefGoogle Scholar
  73. Lucchitta, B.K. and Soderblom, L.A. (1982) The Geology of Europa. In Satellites of Jupiter (D. Morrison, Ed.), Univ. of Arizona Press, Tucson, pp. 521–555.Google Scholar
  74. Lucchitta, B.K., Soderblom, L.A. and Ferguson, H.M. (1981) Structures on Europa. Lunar and Planet. sci., 12, pp. 1555–1567.ADSGoogle Scholar
  75. Lumme, K. and Bowell, E. (1981) Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. Astron. J., 86, pp. 1694–1704.ADSCrossRefGoogle Scholar
  76. Lumme. K. and Bowell, E. (1985) Photometric properties of zodiacal light particles. Icarus, 62, pp. 54–71.ADSCrossRefGoogle Scholar
  77. Lyot, B. (1929) Research on the polarization of light from planets and from terrestrial substances. Ann. Obs. Meudon, 8. Also NASA TT F-187 (1964), Washington, D.C.Google Scholar
  78. McEwen, A.S. (1986) Exogenic and endogenic albedo and color patterns on Europa. J. Geophys. Res., 91, pp. 8077–8097.ADSCrossRefGoogle Scholar
  79. McEwen, A.S. (1991) Photometric functions for photoclinometry and other applications. Icarus, 92, pp. 298–311.ADSCrossRefGoogle Scholar
  80. McGuire, A.F. and Hapke, B.W. (1995) An experimental study of light scattering by large, irregular particles. Icarus, 113, pp. 134–155.ADSCrossRefGoogle Scholar
  81. Middleton, W.E.K. and Mungall, A.G. (1952) The luminous directional reflectance of snow. J. Opt. Soc. Amer., 42, pp. 572–579.ADSCrossRefGoogle Scholar
  82. Minnaert, M. (1941) The reciprocity principle in lunar photometry. Astrophys. J., 93, pp. 403–410.ADSCrossRefGoogle Scholar
  83. Mishchenko, M.I. (1992) The angular width of the coherent backscatter opposition effect: An application to outer planet satellites. Astrophys. and Space sci., 194, pp. 327–333.ADSCrossRefGoogle Scholar
  84. Mishchenko, M.I. (1994) Asymmetry parameters of the phase function for densely packed scattering grains. J. Quant. Spectros. Radiat. Transfer 82, pp. 95–110.ADSCrossRefGoogle Scholar
  85. Muinonen, K. (1990) Light scattering by inhomogeneous media: backward enhancement and reversal of linear polarization. Ph.D. dissertation, University of Helsinki, Finland.Google Scholar
  86. Mukai, S., Mukai, T., Giese, R.H., Weiss, K. and Zerull, R.H. (1982) Scattering of radiation by a large particle with a random rough surface. Moon and Planets, 26, p. 197.ADSCrossRefGoogle Scholar
  87. Murchie, S., Head, J.W., Helfenstein, P. and Plescia, J. (1986) Terrain types and local scale stratigraphy of grooved terrain on Ganymede. Proc. Lunar Planet. sci. Conf. 17th, J. Geophys. Res., SuppL, 91, pp. E222–E238.ADSCrossRefGoogle Scholar
  88. Nelson, M.L., McCord, T.B., Clark, R.N., Johnson, T.V., Matson, D.L., Mosher, J.A. and Soderblom, L.A. (1986) Europa: Characterization and interpretation of global spectral surface units. Icarus 65, pp. 129–151.ADSCrossRefGoogle Scholar
  89. Ostro, S. (1982) Radar properties of Europa, Ganymede, and Callisto. In: Satellites of Jupiter (D. Morrison, Ed.) Univ. Arizona Press, Tucson, pp. 213–236.Google Scholar
  90. Pal, S.R. and Carswell, A.T. (1977) The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere. J. Appl. Meteor., 16, pp. 70–80.ADSCrossRefGoogle Scholar
  91. Pellicori, S.F. (1971) The polarizing properties of pulverized materials with special reference to the lunar surface. Appl. Opt., 10, pp. 270–285.ADSCrossRefGoogle Scholar
  92. Peltoniemi, J., Lumme, K., Muinonen, K. and Irvine, W.M. (1989) Scattering of light by stochastically rough particles. Appl. Optics, 28, p. 4088.ADSCrossRefGoogle Scholar
  93. Ransford, G.A., Finnerty, A.A. and Collerson, K.D. (1980) Europa’s petrological thermal history. Nature, 289, pp. 21–24.ADSCrossRefGoogle Scholar
  94. Roush, T.L., Cruikshank, D.P. and Owen, T.C. (1995) Surface ices in the outer solar system. In: Volatiles in the Earth and Solar System (Farley, K.A., Ed.), Am. Inst. Phys., NY (in press).Google Scholar
  95. Roush, T.L., Pollack, J.B., Witteborn, F.C., Bregman, J.D., and Simpson, J.P. (1990) Ice and minerals on Callisto: A reassessment of the reflectance spectra. Icarus, 86, pp. 355–382.ADSCrossRefGoogle Scholar
  96. Schenk, P. (1984) The crustal tectonics and history of Europa: A structural, morphological, and comparative analysis. In: Advances in Planetary Geology, NASA TM-86247, pp. 3–111.ADSGoogle Scholar
  97. Schenk, P. and McKinnon, W.B. (1985) Dark halo craters and the thickness of grooved terrain on Ganymede. Proc. Lunar Planet. Sci. 15th. J. Geophys. Res., Suppl, 90, pp. C775–C783.ADSGoogle Scholar
  98. Seeliger, H. (1887) Zur Theorie der Beleuchtung der grossen Planeten inbesondere des Saturn. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. II, 16, pp. 405–516.Google Scholar
  99. Seeliger, H. (1895) Theorie der Beleuchtung staubformiger kosmischen Masses inbesondere des Saturinges. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. IL, 18, pp. 1–72.Google Scholar
  100. Shkuratov, Y. (1988) Diffractional model of the brightness surge of complex structure surfaces. Kin., Phys., Cel. Bodies, 4, pp. 33–39.Google Scholar
  101. Sill, T. and Clark, R.N. (1982) Composition of the surfaces of the Galilean satellites. In: Satellites of Jupiter (Morrison, D., Ed.), Univ. of Arizona Press, Tucson, pp. 174–212.Google Scholar
  102. Simonelli, D., Veverka, J., Thomas, P.C., Wisz, M., Switala, A. and Helfenstein, P. (1995) Disk-resolved photometry of Phobos: Reexamination of the Viking images. Icarus, submitted.Google Scholar
  103. Skypeck, A., Veverka, J., Helfenstein, P., and Baker, L. (1991) The photometric roughness of Ariel is not unusual. Icarus, 90, pp. 181–183.ADSCrossRefGoogle Scholar
  104. Sobolev, V.V. (1970) Diffuse reflection and transmission of light by an atmosphere for an arbitrary phase function. Sov. Astron. A.J., 13, p. 893.ADSGoogle Scholar
  105. Spencer, J.R. (1985) Differences in the thermal emission of Ganymede and Callisto, Bull. Amer. Astron. Soc, 17, p. 693.ADSGoogle Scholar
  106. Spencer, J.R. (1990) Nitrogen frost migration on Triton: A historical Model. Geophys. Res. Lett., 17, pp. 1769–1772.ADSCrossRefGoogle Scholar
  107. Spencer, J.R. and Maloney, P.R. (1984) Mobility of water ice on Callisto: Evidence and implications. Geophys. Res. Letts. 11, pp. 1223–1226.ADSCrossRefGoogle Scholar
  108. Squyres, S. (1980) Surface temperatures and retention of H2O frost on Ganymede and Callisto. Icarus, 44, pp. 502–510.ADSCrossRefGoogle Scholar
  109. Squyres, S. (1981) The Morphology and Evolution of Ganymede and Callisto, Ph.D. thesis, Cornell University. In: Advances in Planetary Geology, NASA TM-84412, pp. 365–718.Google Scholar
  110. Squyres, S. and Veverka, J. (1982) Color photometry of surface features on Ganymede and Callisto. Icarus, 52, pp. 117–125.ADSCrossRefGoogle Scholar
  111. Thomas, P.C., Veverka, J., and Helfenstein, P. (1991) Voyager observations of Nereid. J. Geophys. Res., 96, pp. 19253–19259.ADSCrossRefGoogle Scholar
  112. Thomas, P.C., Veverka, J., Helfenstein, P., Brown, R.H., and Johnson, T.V. (1987) Titania’s opposition effect: Analysis of Voyager observations. J. Geophys. Res., 92, pp. 14911–14917.ADSCrossRefGoogle Scholar
  113. Thompson, W.R. and Sagan, C. (1990) Color and chemistry on Triton. Science, 250, pp. 415–418.ADSCrossRefGoogle Scholar
  114. Verbiscer, A.J. (1991) Photometry of Icy Satellite Surfaces Ph.D. dissertation, Cornell University, Ithaca, New York.Google Scholar
  115. Verbiscer, A.J., Helfenstein, P. and Veverka, J. (1990) Backscattering from frost on icy satellites in the outer Solar System. Nature, 347, pp. 162–164.ADSCrossRefGoogle Scholar
  116. Verbiscer, A.J. and Veverka, J. (1989) Albedo dichotomy of Rhea: Hapke analysis of Voyager photometry. Icarus, 82, pp. 336–353.ADSCrossRefGoogle Scholar
  117. Verbiscer, A.J. and Veverka, J. (1990) Scattering properties of natural snow and frost: Comparison with icy satellite photometry. Icarus, 88, pp. 418–428.ADSCrossRefGoogle Scholar
  118. Verbiscer, A.J. and Veverka, J. (1992) Mimas: Photometric roughness and albedo map. Icarus, 99, pp. 63–69.ADSCrossRefGoogle Scholar
  119. Verbiscer, A.J. and Veverka, J. (1994) A photometric study of Enceladus. Icarus, 110, pp. 155–164.ADSCrossRefGoogle Scholar
  120. Veverka, J. (1977) Polarimetry of satellite surfaces. In: Planetary Satellites (J. Burns, Ed.), Univ. Arizona Press, Tucson, pp. 210–231.Google Scholar
  121. Veverka, J., Thomas, P., Johnson, T.V., Matson, D., and Housen, K. (1986) The physical characteristics of satellite surfaces. In Satellites (J. Burns and M.S. Matthews, Eds.), Univ. Arizona Press, Tucson, pp. 342–402.Google Scholar
  122. Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. (1988) Photometry and polarimetry of Mercury. In: Mercury (F. Vilas, C.R. Chapman and M.S. Matthews, Eds.), Univ. Arizona Press, Tucson, pp. 37–58.Google Scholar
  123. Veverka, J., Thomas, P., Helfenstein, P., Brown, R.H. and Johnson, T.V. (1987) Satellites of Uranus: Disk-integrated photometry from Voyager imaging observations. J. Geophys. Res., 92, pp. 14895–14904.ADSCrossRefGoogle Scholar
  124. Wendling, P., Wendling, R., and Weickmann, H.K. (1979) Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663–2671.ADSCrossRefGoogle Scholar
  125. Widorn, T. (1967) Ann. Univ. Sternwarte, Wien 31.Google Scholar
  126. Wolff, M. (1975) Polarization of light reflected from rough planetary surface. Appl. Opt., 14, pp. 1395–1405.ADSCrossRefGoogle Scholar
  127. Wolff, R.S. and Mendis, D.A. (1983) On the nature of the interaction of the Jovian magnetosphere with the icy Galilean satellites. J. Geophys. Res., 88, pp. 4749–4769.ADSCrossRefGoogle Scholar
  128. Zook, H.A. and McCoy, J.E. (1991) Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett., 18, pp. 2117–2120.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. Verbiscer
    • 1
  • P. Helfenstein
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations