Advertisement

Metamorphism of Solar System Ices

  • Janusz Eluszkiewicz
  • Jacek Leliwa-Kopystyński
  • Konrad J. Kossacki
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

This chapter reviews the metamorphic processes of grain growth and densification as they apply to solar system ices. These processes are driven by the thermodynamic constraint of minimum surface energy and their kinetic equations have been studied extensively by material scientists. The application of these equations to solar system ices requires the knowledge of the relevant material parameters. This chapter presents the equations and describes techniques used in compaction experiments. Ice metamorphism explains several observations about various solar system objects and is likely to have played an important role in their internal evolution.

Keywords

Surface Source Giant Planet Cometary Nucleus Lunar Planet Boundary Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, M.F. (1974) A first report on sintering diagrams. Acta Metall., 22, pp. 275–288.CrossRefGoogle Scholar
  2. Ashby, M.F. (1988) Background Reading: Hot Isostatic Pressing and Sintering. University of Cambridge, Engineering Department, Cambridge, England.Google Scholar
  3. Ashby, M.F. (1990) Background Reading: Hot Isostatic Pressing 6.0. University of Cambridge, Engineering Department, Cambridge, England.Google Scholar
  4. Calvin, W.M. and Martin, T.Z. (1994) Spatial variability in the seasonal south polar cap of Mars. J. Geophys. Res., 99, pp. 21,143–21,152.ADSCrossRefGoogle Scholar
  5. Colbeck, S.C. (1983) Theory of metamorphism of dry snow. J. Geophys. Res., 88, pp. 5475–5482.ADSCrossRefGoogle Scholar
  6. Coucoulas, A. and Gregory, E. (1963) Some observations on the microstructure and fragmentation of solid carbon dioxide. Trans. Metall. Soc. AIME, 227, pp. 1134–1142.Google Scholar
  7. Croft, S.K. (1992) Proteus: Geology, shape, and catastrophic destruction. Icarus, 99, pp. 402–419.ADSCrossRefGoogle Scholar
  8. Cruikshank, D.P., Brown R.H. and Clark, R..N. (1984) Nitrogen on Triton. Icarus, 58, pp. 293–305.ADSCrossRefGoogle Scholar
  9. Dermott, S.F. and Thomas, P.C. (1988) The shape and structure of Mimas. Icarus, 73, pp. 25–65.ADSCrossRefGoogle Scholar
  10. Durham, W.B., Kirby, S.H. and Stern, L.A. (1989) Brittle and ductile behavior of ice/rock mixtures. Lunar Planet. sci. Con., 20, pp. 254–255 (abstract).ADSGoogle Scholar
  11. Durham, W.B., Kirby, S.H. and Stern, L.A. (1992) Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res., 97, pp. 20,883–20,897.ADSCrossRefGoogle Scholar
  12. Ellsworth, K. and Schubert, G. (1983) Saturn’s icy satellites: Thermal and structural models. Icarus, 53, pp. 332–340.CrossRefGoogle Scholar
  13. Eluszkiewicz, J. (1988) Compaction of icy satellites. Lunar Planet. sci. Conf., 19, pp. 301–302 (abstract).ADSGoogle Scholar
  14. Eluszkiewicz, J. (1990) Compaction and internal structure of Mimas. Icarus, 84, pp. 215–225.ADSCrossRefGoogle Scholar
  15. Eluszkiewicz, J. (1991) On the microphysical state of the surface of Triton. J. Geophys. Res., 96, pp. 19,217–19,229.ADSCrossRefGoogle Scholar
  16. Eluszkiewicz, J. (1993) On the microphysical state of the martian seasonal caps. Icarus, 103, pp. 43–48.ADSCrossRefGoogle Scholar
  17. Eluszkiewicz, J. and Leliwa-Kopystyński, J. (1988) A model of the porous structure of icy satellites. In Proceedings of the Eighteenth Lunar and Planetary Conference, Cambridge, Cambridge University Press, pp. 741–747.Google Scholar
  18. Eluszkiewicz, J. and Leliwa-Kopystyński, J. (1989) Compression effects in rock-ice mixtures: An application to the study of satellites. Phys. Earth Planet. Inter., 55, pp. 387–398.ADSCrossRefGoogle Scholar
  19. Finney, J.L. (1970) Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. London Ser. A, 319, pp. 479–493.ADSCrossRefGoogle Scholar
  20. Gow, A.J. (1969) On the rates of growth of grains and crystals in south polar firn. J. Glaciol, 8, pp. 241–252.ADSGoogle Scholar
  21. Greskovich, C. and Lay, K.W. (1972) Grain growth in very porous Al2O3 compacts. J. Am. Ceram. Soc., 55, pp. 142–146.CrossRefGoogle Scholar
  22. Grün, E. and coauthors (1991) Laboratory simulation of cometary processes: Results from first KOSI experiments. In Comets in the Post-Halley Era, Vol. 1 (Eds: R.L. Newburn, M. Neugebauer, and J. Rahe), Kluwer, Dordrecht.Google Scholar
  23. Helfenstein, P., Veverka, J., McCarthy, D., Lee, P. and Hillier, P. (1992) Large quasi-circular features beneath frost on Triton. Science, 255, pp. 824–826.ADSCrossRefGoogle Scholar
  24. Helle, A.S., Easterling, K.E. and Ashby, M.F. (1985) Hot-isostatic pressing diagrams: New developments. Acta Metall, 33, pp. 2163–2174.CrossRefGoogle Scholar
  25. Hillert, M. (1965) On the theory of normal and abnormal grain growth. Acta Metall., 13, pp. 227–238.CrossRefGoogle Scholar
  26. Kirk, R.L. (1990) Diffusion kinetics of solid methane and nitrogen: Implications for Triton. Lunar Planet. sci. Conf., 22, pp. 721–722 (abstract).ADSGoogle Scholar
  27. Knudsen, F. (1959) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J. Am. Ceram. Soc, 42, pp. 376–387.CrossRefGoogle Scholar
  28. Kömle, N.I. and Steiner, G. (1992) Temperature evolution of porous ice samples covered by a dust mantle. Icarus, 96, pp. 204–212.ADSCrossRefGoogle Scholar
  29. Kossacki, K.J. and Leliwa-Kopystyński, J. (1993) Medium-size icy satellites: Thermal and structural evolution during accretion. Planet. Space. sci., 41, pp. 729–741.ADSCrossRefGoogle Scholar
  30. Kossacki, K.J. and Lorenz, R.D. (1996) Hiding Titan’s ocean: Densification and hydrocarbon storage in an icy regolith. Planet. Space. sci., 44, pp. 1029–1037.ADSCrossRefGoogle Scholar
  31. Kossacki, K.J., Kömle, N.I., Kargl, G. and Steiner, G. (1994) The influence of grain sintering on the thermoconductivity of porous ice. Planet. Space. sci., 42, pp. 383–389.ADSCrossRefGoogle Scholar
  32. Kossacki, K.J., Kömle, N.I., Leliwa-Kopystyński, J. and Kargl, G. (1997) Laboratory investigation of the evolution of cometary analogs: Results and interpretation. Icarus, (in press).Google Scholar
  33. Kurtz, S.K. and Carpay, F.M.A. (1980) Microstructure and normal grain growth in metals and ceramics: II. Experiment. J. Appl. Phys., 51, pp. 5745–5754.ADSCrossRefGoogle Scholar
  34. Lara, L.M., Lorenz, R.D. and Rodrigo, R., (1994) Liquids and solids on the surface of Titan: Results of a new photochemical model. Planet. Space sci., 42, pp. 5–14.ADSCrossRefGoogle Scholar
  35. Lee, P., Helfenstein, P., Veverka, J. and McCarthy, D. (1992) Anomalous-scattering region on Triton. Icarus, 99, pp. 82–97.ADSCrossRefGoogle Scholar
  36. Leliwa-Kopystynski, J. (1995) Equations of state of icy/mineral media related to planetary physics. Adv. Space Res., 15, pp. 69–78.ADSCrossRefGoogle Scholar
  37. Leliwa-Kopystynski, J. and Maeno, N. (1993) Ice/rock porous mixtures: Compaction experiments and interpretation. J. Glaciol., 39, pp. 643–655.ADSGoogle Scholar
  38. Leliwa-Kopystyński, J. and Kossacki, K.J. (1995) Kinetics of compaction of granular ices H2O, CO2, and (NH3)a!(H2O)(1x) at pressures 2 — 20 MPa and in temperatures 100–270 K. Planet. Space sci., 43, pp. 851–861.ADSCrossRefGoogle Scholar
  39. Leliwa-Kopystynski J., Makkonen, L., Erikoinen, O. and Kossacki, K.J. (1994) Kinetics of pressure induced effects in water ice/rock granular mixtures and application to the physics of icy satellites. Planet. Space. Set., 42, pp. 545–555.ADSCrossRefGoogle Scholar
  40. Lunine, J.I. (1993) Does Titan have an ocean? A review of current understanding of Titan’s surface. Rev. Geophys., 31, pp. 131–149.ADSGoogle Scholar
  41. Maeno, N. and Ebinuma, T. (1983) Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets. J. Phys. Chem., 87, pp. 4103–4110.CrossRefGoogle Scholar
  42. McKenzie, D. (1984) The generation and compaction of partially molten rock. J. Petrol., 25, pp. 713–765.MathSciNetADSCrossRefGoogle Scholar
  43. Mekler, Y. and Prialnik, D. (1991) The formation of an ice crust below the dust mantle of a cometary nucleus. Astrophys. J., 366, pp. 318–323.ADSCrossRefGoogle Scholar
  44. Muhleman, D.O., Grossman, A.W., Butler, B.J. and Slade, M.A. (1990) Radar reflectivity of Titan. Science, 248, pp. 975–980.ADSCrossRefGoogle Scholar
  45. Nicholson, P.D., Hamilton, D.P., Matthews, K. and Yoder, CF. (1992) New observations of Saturn’s coorbital satellites. Icarus, 100, pp. 464–484.ADSCrossRefGoogle Scholar
  46. Pollack, J.B., Schwartz, J.M. and Rages, K. (1990) Scatterers in Triton’s atmosphere: Implications for the seasonal volatile cycle. Science,250, pp. 440–443.ADSCrossRefGoogle Scholar
  47. Ross, M.N. and Schubert, G. (1988) Internal structure and shape of Mimas. Icarus, 75, pp. 479–484.ADSCrossRefGoogle Scholar
  48. Schneider, H., Schmucker, M., Ikeda, K. and Kaysser, W.A. (1993) Optically translucent mullite ceramics. J. Am. Ceram. Soc, 76, pp. 2912–2914.CrossRefGoogle Scholar
  49. Smith, B.A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.J., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Cook II, A.F., Cuzzi, J., Pollack, J.B., Danielson, G.E., Ingersoll, A.P., Davies, M.E., Hunt, G.E., Morrison, D., Owen, T., Sagan, C, Veverka, J., Strom, R. and Suomi, V.E. (1982) A new look at the Saturn system: The Voyager 2 images. Science, 215, pp. 504–537.ADSCrossRefGoogle Scholar
  50. Smoluchowski, R. and McWilliam, A. (1984) Structure of ices on satellites. Icarus, 58, pp. 282–287.ADSCrossRefGoogle Scholar
  51. Smoluchowski, R., Marie, M. and McWilliam, A. (1984) Evolution of density in solar system ices. Earth, Moon, and Planets, 30, pp. 281–288.ADSCrossRefGoogle Scholar
  52. Stevenson, D. J. (1992) Interior of Titan. In Proceedings Symposium on Titan. Eur. Space Agency Spec. Pub. SP-338, pp. 29–33.Google Scholar
  53. Swinkels, F.B. and Ashby, M.F. (1981) A second report on sintering diagrams. Acta Metall, 29, pp. 259–281.CrossRefGoogle Scholar
  54. Thomas, P.C. (1989) The shapes of small satellites. Icarus, 77, pp. 248–274.ADSCrossRefGoogle Scholar
  55. Wilkinson, D.S. (1988) A pressure-sintering model for the densification of polar firn and glacier ice. J. Glacial., 34, pp. 40–45.ADSGoogle Scholar
  56. Yelle, R.V., Lunine, J.I. and Hunten, D.M. (1991) Energy balance and plume dynamics in Triton’s lower atmosphere. Icarus, 89, pp. 347–358.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Janusz Eluszkiewicz
    • 1
  • Jacek Leliwa-Kopystyński
    • 2
    • 3
  • Konrad J. Kossacki
    • 2
  1. 1.Atmospheric and Environmental Research, Inc.CambridgeUSA
  2. 2.Institute of GeophysicsWarsaw UniversityWarszawaPoland
  3. 3.Space Research CenterPolish Academy of SciencesWarszawaPoland

Personalised recommendations