Skip to main content

Rheology of Planetary Ices

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Laboratory measurements of the brittle and ductile behavior of several of the major icy planetary building materials have been made: water ice phases I through VI, ices in the ammonia-water system, mixtures of water ice plus particulates, and methane clathrate. All the materials measured thus far are sufficiently ductile that they can be expected to participate in convective motion in planetary interiors, and the quantitative rheological laws presented here provide constraints for models of evolutionary and present-day processes on icy moons of the solar system. Some unusual behavior is worth special note: ice III is several orders of magnitude less viscous than the other water ice phases. Ammonia dihydrate has a strength that is so temperature sensitive that, although it melts near 176 K, it becomes as strong as ice I after a decrease in temperature of only 23 K. Because of the extrapolation over many orders of magnitude in strain rate from the laboratory to planetary interiors, some of the material strength values calculated on the basis of the laboratory data may be only upper bounds on strength in the planetary setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arakawa, M. and Maeno, N. (1994) Effective viscosity of partially melted ice in the ammonia-water system, Geophys. Res. Lett., 21, pp. 1515–1518.

    Article  ADS  Google Scholar 

  • Beeman, M.L., Durham, W.B. and Kirby, S.H. (1988) Friction of ice, J. Geophys. Res., 93, pp. 7625–7633.

    Article  ADS  Google Scholar 

  • Consolmagno, G.J. and Lewis, J. S. (1976) Structural and thermal models of icy Galilean satellites, in Jupiter, T. Gehreis ed., Univ. of Arizona Press, pp. 1035–1051.

    Google Scholar 

  • Clark, B.R. and Mullin, R.P. (1976) Martian glaciation and the flow of solid CO2, Icarus, 27, pp. 215–228.

    Article  ADS  Google Scholar 

  • Durham, W.B., Heard, H.C. and Kirby, S.H. (1983) Experimental deformation of poly-crystalline H2O ice at high pressure and low temperature: preliminary results, J. Geophys. Res., 88, pp. B377–B392.

    Article  ADS  Google Scholar 

  • Durham, W.B., Kirby, S.H., Heard, H.C., Stern, L.A. and Boro, CO. (1988) Water ice phases II, III, and V: Plastic deformation and phase relationships, J. Geophys. Res., 93, pp. 10191–10208.

    Article  ADS  Google Scholar 

  • Durham, W.B., Kirby, S.H. and Stern, L.A. (1992) Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 97, pp. 20883–20897.

    Article  ADS  Google Scholar 

  • Durham, W.B., Kirby, S.H. and Stern, L.A. (1993) Flow of ices in the ammonia-water system, J. Geophys. Res., 98, pp. 17667–17682.

    Google Scholar 

  • Durham, W.B., Stern, L.A. and Kirby, S.H. (1996) Rheology of water ices V and VI, J. Geophys. Res., 101, pp. 2989–3001.

    Google Scholar 

  • Echelmeyer, K. and Kamb, B. (1986) Rheology of ice II and ice III from high-pressure extrusion, Geophys. Res. Lett., 13, pp. 693–696.

    Article  ADS  Google Scholar 

  • Eluszkiewicz, J. and Stevenson, D.J. (1990) Rheology of solid methane and nitrogen: Applications to Triton, Geophys. Res. Lett., 17, pp. 1753–1756.

    Article  ADS  Google Scholar 

  • Frost, H.J. and Ashby, M.F. (1982) Deformation Mechanism Maps, Pergamon, Oxford, 166 pp.

    Google Scholar 

  • Goldsby, D.L., Kohlstedt, D.L. and Durham, W.B. (1993) Rheology of water and ammonia ices, Lunar Planet. sci. XXIV, 24th Lunar and Planetary Science Abstracts, pp. 36–37.

    Google Scholar 

  • Goldsby, D.L. and Kohlstedt, D.L. (1995) The transition from dislocation to diffusion creep in ice, Lunar Planet. sci. XXVI, 26th Lunar and Planetary Science Abstracts, pp. 473–474.

    Google Scholar 

  • Goodman, D.J., H. J. Frost, and M. F. Ashby, The plasticity of polycrystalline ice, Phil. Mag., 43, 665–695, 1981.

    Article  Google Scholar 

  • Heard, H.C., Durham, W.B., Boro, B.O. and Kirby, S.H. (1990) A triaxial deformation apparatus for service at 77 ≤ T ≤ K, in The Brittle-Ductile Transition in Rocks, Geophysical Monograph 56, ed. by A.G. Duba, W.B. Durham, J.W. Handin and H.F. Wang, American Geophysical Union, Washington, D.C. pp. 225–228.

    Chapter  Google Scholar 

  • Homer, D.R. and Glen, J.W. (1978) The creep activation energies of ice, J. Glaciol., 21, pp. 429–444.

    ADS  Google Scholar 

  • Kirby, S.H. and Durham, W.B. (1991) Deep moonquakes on Ganymede? (abstract), Lunar Planet. sci. XXII, 22th Lunar and Planetary Science Abstracts, pp. 719–720.

    Google Scholar 

  • Kirby, S.H., Durham, W.B., Beeman, M.L., Heard, H.C. and Daley, M.A. (1987) Inelastic properties of ice Ih at low temperatures and high pressures, J. Physique, 48, supplement (VIIth Symposium on the Physics and Chemistry of Ice), pp. 227–232.

    Article  Google Scholar 

  • Kirby, S.H., Durham, W.B. and Stern, L.A. (1991) Mantle phase changes and deep-earthquake faulting in subducting lithosphere, Science, 252, pp. 216–225.

    Article  ADS  Google Scholar 

  • Kirby, S.H., Stein, S., Okal, E. and Rubie, D. (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere, Reviews of Geophysics, 34, pp. 261–306.

    Article  ADS  Google Scholar 

  • Kirk R.L. and Stevenson, D.J. (1987) Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 69, pp. 91–134.

    Article  ADS  Google Scholar 

  • Lewis, J.S. (1972) Low temperature condensation from the solar nebula, Icarus, 16, pp. 241–252.

    Article  ADS  Google Scholar 

  • Mueller, S. and McKinnon, W.B. (1988) Three-layered models of Ganymede and Callisto: Compositions, structures, and Aspects of evolution, Icarus, 76, pp. 437–464.

    Article  ADS  Google Scholar 

  • Parmentier, E.M. and Head, J.W. (1979) Internal processes affecting surfaces of lowdensity satellites: Ganymede and Callisto, J. Geophys. Res., 84, pp. 6263–6276.

    Article  ADS  Google Scholar 

  • Paterson, W.S.B. (1981) The Physics of Glaciers, 2nd edition, Pergamon, New York.

    Google Scholar 

  • Poirier, J.-P. (1985) Creep of Crystals, Cambridge University Press, Cambridge, 260 pp.

    Book  Google Scholar 

  • Prinn, R.G. and Fegley, B.Jr. (1981) Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae: implications for satellite composition, Astrophys. J., 249, pp. 308–317.

    Article  ADS  Google Scholar 

  • Schulson, E.M. (1979) An analysis of the brittle to ductile transition in polycrystalline ice under tension, Cold Regions sci. and Technol., 1, pp. 15–24.

    Google Scholar 

  • Sotin, C, Gillet, P. and Poirier, J.-P. (1985) Creep of high-pressure ice VI, in Ices in the Solar System, J. Klinger et al., ed., D. Reidel Publishing Co., Dordrecht, Holland, pp. 109–118.

    Chapter  Google Scholar 

  • Sotin, C. and Poirier, J.-P. (1987) Viscosity of ice V, J. Physique, 48, supplement (VIIth Symposium on the Physics and Chemistry of Ice), pp. 233–238.

    Article  Google Scholar 

  • Stern, L.A., Kirby, S.H. and Durham, W.B. (1996) Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice, Science, 273, pp. 1843–1848.

    Article  ADS  Google Scholar 

  • Stern, L.A., Durham, W.B. and Kirby, S.H. (1997) Grain-size-induced weakening of H2O ices I and II, and associated anisotropic recrystallization, J. Geophys. Res., in press.

    Google Scholar 

  • Weertman, J. (1983) Creep deformation of ice, in Annu. Rev. Earth Planet. Sci., 11, pp. 215–240.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Durham, W.B., Kirby, S.H., Stern, L.A. (1998). Rheology of Planetary Ices. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics