Advertisement

Surface/Atmosphere Interactions and Volatile Transport (Triton, Pluto, and Io)

  • L. M. Trafton
  • D. L. Matson
  • J. A. Stansberry
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

On Triton and Pluto, the volatile frosts are held close to a single temperature by hydrostatic equilibrium and latent heat transport. Their atmospheres are expected to undergo extreme seasonal variations in pressure as the insolation on the ices changes, leading to seasonal variations in atmospheric mixing ratios and to the seasonal hemispherical transport of surface ice. A depth of approximately one meter of N 2 ice is transported on semiannual timescales; this is far in excess of the maximum mass of these atmospheres. Pluto’s present atmospheric escape rate implies that over the life of the solar system, ~ 2 km of N 2 ice could have escaped from Pluto. Two alternative models have been proposed which can produce the observed elevated levels of CH 4 in Pluto’s atmosphere, both focusing on surface-atmosphere interactions. The “Detailed Balancing Model” assumes that a CH 4-enriched surface layer, only a few molecules thick and effectively in vapor pressure equilibrium with the atmosphere, reduces the partial pressure of N 2 enough to explain the enhanced atmospheric mixing ratio of CH 4. The “Patch Model” assumes that the sublimation of N 2 leaves behind a relatively small fractional area (at most 1%) of CH 4 ‘lag’ deposit which develops into rather thick, warm local patches which release CH 4 into the atmosphere.

On Io, where SO2 is the only identified volatile interacting between Io’s atmosphere and the surface, the vapor pressure of SO 2 is too small to support a significant global atmosphere. Thus, the atmosphere is confined to regions near active volcanic/plume sources of SO 2 or near patches of surface SO 2 frost deposited by winds emanating from volcanic sources. Recent work has shown that the surface frosts are colder than expected. Reconciliation of the modeling of the new microwave data with the Voyager-view of Io could be achieved if Io has many small plumes (~ 10 km) missed by Voyager. Such plumes are thermodynamically possible and could be easily supported by Io’s intrusive magmatic activity.

Keywords

Radio Occultation Hydrostatic Equilibrium Sublimation Rate Eruptive Plume Stellar Occultation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballester, G.E., McGrath, M.A., Strobel, D.F., Zhu, X., Feldman, P.D. and Moos, H.W. (1994) Detection of the SO2 atmosphere on Io with the Hubble Space Telescope, Icarus, 111, pp. 2–17.ADSCrossRefGoogle Scholar
  2. Baloga, S. and Spudis, P. (1993) Reconstruction of the dynamics of the 1800-1801 Hualalai eruption. Lunar and Planetary sci. 24, pp. 55–56.ADSGoogle Scholar
  3. Binzel, R.P. (1990) Long-term seasonal variations on Pluto, Bull. Amer. Astron. Soc., 22, p. 1128.ADSGoogle Scholar
  4. Blaney, D.L., Johnson, T.V., Matson, D.L. and Veeder, G.J. (1995) Volcanic Eruptions on Io: Heat Flow, Resurfacing, and Lava Composition, Icarus, 113, pp. 220–225.ADSCrossRefGoogle Scholar
  5. Broadfoot, L. et ai. 1989, Ultraviolet spectrometer observations of Neptune and Triton, Science, 246, pp. 1456–1459.Google Scholar
  6. Brown, R.H., Cruikshank, D.P., Veverka, J., Helfenstein, P. and Eluszkiewicz, J. (1995) Surface composition and photometric properties of Triton. In Neptune and Triton, D.P. Cruikshank, Ed. University of Arizona Press, Tucson.Google Scholar
  7. Brown, R.H. and Kirk, R.L. (1991) Coupling of internal heat to volatile transport on Triton, Bull. Amer. Astron. Soc, 23, p. 1210.ADSGoogle Scholar
  8. Brown, R.H. and Kirk, R.L. (1994) Coupling of volatile transport and internal heat flow on Triton, J. Geophys. Res., 99, pp. 1965–1981.ADSCrossRefGoogle Scholar
  9. Brown, R.H. and Matson, D.L. (1987) Thermal effects of insolation propagation into the regoliths of airless bodies, Icarus, 72, pp. 84–94.ADSCrossRefGoogle Scholar
  10. Brown, G.N. and Ziegler, W.T. (1979) Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure, in Advances in Cryogenic Engineering, 25, pp. 662–670.Google Scholar
  11. Buie, M.W., Tholen, D.J. and Home, K. (1992) Albedo maps of Pluto and Charon: Initial mutual event results, Icarus, 97, pp. 211–227.ADSCrossRefGoogle Scholar
  12. Carr, M.H. (1986) Silicate volcanism on Io, J. Geophys. Res., 91, pp. 3521–3532.ADSCrossRefGoogle Scholar
  13. Cruikshank, D.P., Roush, T.L., Owen, T.C., Geballe, T.R., de Bergh, C, Schmitt, B., Brown, R.H., Bartholomew, M.J. (1993) Ices on the surface of Triton, Science, 261, pp. 745–745.ADSCrossRefGoogle Scholar
  14. Dean, J.A., ed. (1973) Lange’s Handbook of Chemistry, New York, McGraw-Hill.Google Scholar
  15. Dobrovolskis, A.R. (1980) Where are the rings of Neptune? Icarus, 43, pp. 222–226.ADSCrossRefGoogle Scholar
  16. Drish, W.F. Jr., Harmon, R.H., Marcialis, R.L. and Wild, W.J. (1995) Images of Pluto generated by matrix lightcurve inversion, Icarus, 113, pp. 360–386.ADSCrossRefGoogle Scholar
  17. Duxbury, N.S. and Brown, R.H (1993) The phase composition of Triton’s polar caps, Science, 261, pp. 748–751.ADSCrossRefGoogle Scholar
  18. Dzurisin, D., Koyanagi, R.V. and English, T.T. (1984) Magma supply and storage at Kilauea volcano, Hawaii, 1956-1983, J. Volcanol. geotherm. Res., 21, pp. 177–206.ADSCrossRefGoogle Scholar
  19. Elliot, J.L. and Young, L.A. (1992) Analysis of stellar occultation data for planetary atmospheres. I. Model fitting, with application to Pluto, Astron. J., 103, pp. 991–1015.ADSCrossRefGoogle Scholar
  20. Eluszkiewicz, J. (1991) On the microphysical state of the surface of Triton. Journal of Geophysical Research (supplement), 96, pp. 19217–19229.ADSCrossRefGoogle Scholar
  21. Fanale, F.P., Banerdt, W., Elson, L., Johnson, T.V. and Zurek, R. (1982) Io’s Surface: Its Phase Composition and Influence on Io’s Atmosphere and Jupiter’s Magnetosphere, In Satellites of Jupiter, D. Morrison, ed., (University of Arizona Press, Tucson).Google Scholar
  22. Grundy, W.M. and Fink, U. (1995) A dozen years of CCD spectrophotometry: Constraints on the distribution and composition of Pluto’s terrains, Bull. Amer. Astron. Soc., 27, p. 1100.ADSGoogle Scholar
  23. Gurrola, E.M., Marouf, E.A., Eshleman, V.R., Tyler, G.L., Rosen, P.A. (1992) Analysis of Voyager radio occultation observations of Triton, (A talk at the Neptune and Triton conference, Tucson, Arizona).Google Scholar
  24. Hackwell, et ai. (1990) A Low Resolution Array Spectrograph for the 2.9–13.5 μm Spectral Region, Proc. SPIE Conf. 1235 on Instrumentation in Astronomy VII.Google Scholar
  25. Hansen, C.J., McEwen, A.S., Ingersoll, A.P. and Terrile, R.J. (1990) Surface and airborne evidence for plumes and winds on Triton, Science, 250, pp. 421–424.ADSCrossRefGoogle Scholar
  26. Hansen, C.J. and Paige, D. (1992) A thermal model for the seasonal nitrogen cycle on Triton, Icarus, 99, pp. 273–288.ADSCrossRefGoogle Scholar
  27. Harris. A.W. (1984) Physical characteristics of Neptune and Triton inferred from the orbit of Triton, In Uranus and Neptune, J.T. Bergstralh, ed., NASA Conference Pub. 2330, pp. 357–373.Google Scholar
  28. Herbert, F. and Sandel, W. (1991) CH4 and Haze in Triton’s lower atmosphere, J. Geophys. Res., 96, pp. 19,241–19,252.ADSCrossRefGoogle Scholar
  29. Hillier, J., Helfenstein, P., Verbiscer, A., Veverka, J., Brown, R.H., Goguen, J. and Johnson, T.V. (1990) Voyager disk-integrated photometry of Triton. Science, 250, pp. 419–421.ADSCrossRefGoogle Scholar
  30. Hillier, J., Helfenstein, P., Verbiscer, A., Veverka, J. (1991) Voyager photometry of Triton: Haze and surface photometric properties, J. Geophys. Res., 96, pp. 19,203–19,210.ADSCrossRefGoogle Scholar
  31. Howell, et al., 1984, Sulfur Dioxide on Io: Spatial Distribution and Physical State, Icarus, 57, p. 82.Google Scholar
  32. Hubbard, W.B., Yelle, R.V. and Lunine, J.I. (1990) Nonisothermal Pluto atmosphere models, Icarus, 84, pp. 1–11.ADSCrossRefGoogle Scholar
  33. Ingersoll, A.P., Summers, M.E. and Schlipf, S.G. (1985) Supersonic meterology of Io: Sublimation Driven Flow of SO2, Icarus, 64, pp. 375–390.ADSCrossRefGoogle Scholar
  34. Ingersoll, A.P. (1990) Dynamics of Triton’s atmosphere, Nature, 344, pp. 315–317.ADSCrossRefGoogle Scholar
  35. Ingersoll, A.P. and Tryka, K.A. (1990) Triton’s plumes: The dust devil hypothesis, Science, 250, pp. 435–437.ADSCrossRefGoogle Scholar
  36. Jewitt, D.C. (1994) Heat from Pluto, Astron. J., 107, pp. 372–378.ADSCrossRefGoogle Scholar
  37. Johnson, T.V. and Matson, D.L. (1989) Io’s Tenous Atmosphere, In Origin and Evolution of Planetary and Satellite Atmospheres, S. Atreya, J. Pollack and M. Mathews, eds., (University of Arizona Press, Tucson), pp. 666–681.Google Scholar
  38. Johnson, T.V., Matson, D.L., Blaney, D.L., Veeder, G.J. and Davies, A.G. (1995a), Stealth Plumes on Io, Lunar and Planetary Science XXVI, pp. 687–688.ADSGoogle Scholar
  39. Johnson, T.V., Matson, D.L., Blaney, D.L., Veeder, G.J. and Davies, A.G. (1995b), Stealth Plumes on Io, Geosphys. Res. Lett., (submitted).Google Scholar
  40. Johnson, T.V. and Soderblom, L.A. (1982) Volcanic Eruptions on Io: Implications for Surface Evolution and Mass Loss, In Satellites of Jupiter, D. Morrison, ed., (University of Arizona Press, Tucson), pp. 634–646.Google Scholar
  41. Johnson, T.V., Veeder, G.J., Matson, D.L., Brown, R.H., Nelson, R.M. and Morrison, D. (1988) Io: Evidence for silicate volcanism in 1986, Science, 242, pp. 1280–1283.ADSCrossRefGoogle Scholar
  42. KiefFer, S.W. (1982) Ionian Volcanism, In Satellites of Jupiter, D. Morrison, ed., (Univ. of Ariz. Press, Tucson), pp. 647–723.Google Scholar
  43. Kirk, R.L., Soderblom, L.A., Brown, R.H., Kieffer, S.W. and Kargel, J.S. (1995) Triton’s plumes: Discovery, characteristics and models. In Neptune and Triton, D.P. Cruikshank, Ed., University of Arizona Press, Tucson.Google Scholar
  44. Kirk, R.L., Brown, R.H., Sodderblom, L.A. (1990) Subsurface energy storage and transport for solar-powered geysers on Triton, Science, 250, pp. 424–429.ADSCrossRefGoogle Scholar
  45. Kumar, S. (1985) The SO2 atmosphere and ionosphere of Io: Ion chemistry, atmospheric escape, and models corresponding to the Pioneer 10 radio occultation measurements, Icarus, 61, pp. 101–123.ADSCrossRefGoogle Scholar
  46. Kumar, S. and Hunten, D.M. (1982) The atmosphere of Io and other satellites, In Satellites of Jupiter, D. Morrison, ed., (University of Arizona Press, Tucson), pp. 782–806.Google Scholar
  47. Krasnopolsky, V.A., Sandel, B.R. and Herbert, F. (1992) Properties of haze in the atmosphere of Triton, J. Geophys. Res., 97, pp. 11695–11700.ADSCrossRefGoogle Scholar
  48. Lellouch, E. (1994) The thermal structure of Pluto’s atmosphere: Clear vs. hazy models, Icarus, 108, pp. 255–264.ADSCrossRefGoogle Scholar
  49. Lellouch, E., Belton, M., de Pater, I., Gulkis, S. and Encrenaz, T. (1990) Io’s atmosphere from microwave detection of SO2, Nature, 346, pp. 639–641.ADSCrossRefGoogle Scholar
  50. Lellouch, E., Belton, M., de Pater, I., Paubert, G., Gulkis, S. and Encrenaz, T. (1992) The Structure, Stability, and Global Distribution of Io’s Atmosphere, Icarus, 98, pp. 271–295.ADSCrossRefGoogle Scholar
  51. Lellouch, E., Strobel, D., Belton, M., Paubert, G., Ballester, G. and de Pater, I. (1994) Millimeter wave observations of Io’s atmosphere: new data and new models, Bull. Amer. Astron. Soc, 26, p. 1136.ADSGoogle Scholar
  52. Lellouch, E. (1996) Urey Prize lecture. Io’s atmosphere: Not yet understood, Icarus, 124, pp. 1–21.ADSCrossRefGoogle Scholar
  53. Marcialis, R.L. and Lebofsky, L.A. (1991) CVF spectrophotometry of Pluto: Correlation of composition with albedo, Icarus, 89, pp. 255–263.ADSCrossRefGoogle Scholar
  54. Matson, D.L. and Nash, D. (1983) Io’s atmosphere: Pressure control by regolith cold trapping and surface venting, J. Geophys. Res., 88, pp. 4771–4783.ADSCrossRefGoogle Scholar
  55. Matson, D.L. and Brown, R.H. (1989) Solid-state greenhouses and their implications for icy satellites, Icarus, 77, pp. 67–81.ADSCrossRefGoogle Scholar
  56. Matson, D.L., Johnson, T.V., Blaney, D.L., Veeder, G.J. and Davies, A.G. (1995) Io’s Heat Flow and the Silicate Lava Model, Annales Geophysicae, 13 supp. III, p. C745.Google Scholar
  57. McEwen, A.S., Isbell, N.R., Edwards, K.E. and Pearl, J.C. (1992) New Voyager 1 hot spot identifications and heat flow of Io, Bull. Amer. Astron. Soc, 24, p. 935.ADSGoogle Scholar
  58. McEwen, A.S., Johnson, T.V.,Matson, D.L. and Soderblom, L.A. (1988) The global distribution, abundance, and stability of SO2 on Io, Icarus, 75, pp. 450–478.ADSCrossRefGoogle Scholar
  59. McEwen, A.S., Lunine, J.I. and Carr, M.H. (1989) Dynamical geophysics of Io, in Time-Variable Phenomena in the Jovian System, M.J.S. Belton, R.A. West and J. Rahe, eds., NASA Spec. Publ. SP-494, pp. 11–46.Google Scholar
  60. McEwen, A.S., Matson, D.L., Johnson, T.V. and Soderblom, L.A. (1985) Volcanic hot spots on Io: Correlation with low-albedo Calderas, J. Geophys. Res., 90, pp. 12345–123ADSCrossRefGoogle Scholar
  61. McGrath, M. and Johnson, R.E. (1987) Magnetospheric plasma sputtering of Io’s atmosphere, Icarus, 69, pp. 519–531.ADSCrossRefGoogle Scholar
  62. Millis, R.L., Wasserman, L.H., Franz, O.G., Nye, R.A., Elliot, J.L., Dunham, E.W., Bosh, A.S., Young, L.A., Slivan, S.M., Gilmore, A.C., Kilmartin, P.M., Allen, W.H., Watson, R.D., Dieters, S.W., Hill, K.M., Giles, A.B., Blow, G., Priestley, J., Kissling, W.M., Walker, W.S.G., Marino, B.F., Dix, D.G., Page, A., Ross, J.E., Kennedy, H.D. and Klemola, A.R. (1993) Pluto’s radius and atmosphere: Results from the entire 9 June 1988 occultation data set, Icarus, 105, pp. 282–297.ADSCrossRefGoogle Scholar
  63. Moore, J.M. and Spencer, J.R. (1990) Koyaanismuuyaw: The hypothesis of a perennially dichotomous Triton, Geophys. Res. Lett., 17, pp. 1757–1760.ADSCrossRefGoogle Scholar
  64. Nash, D.B., et al. (1980) Frost, UV-Visible Reflectivity and Limits on Io Surface Coverage, Geophys. Res. Lett., 7, pp. 665–668.ADSCrossRefGoogle Scholar
  65. Nash, D.B., Carr, M.H., Gradie, J., Hunten, D.M. and Yoder, CF. (1986) Io, In Satellites, J.A. Burns and M.S. Matthews, eds., (University of Arizona Press, Tucson), pp. 629–688.Google Scholar
  66. Nash, D.B. (1993) A Case for Na2S on Io’s Surface: Sulfide Volcanism, in Io: An International Conference, Capistrano Conf. N°3, June 22–25, 1993, San Juan Capistrano, CA, pp. 75–76.Google Scholar
  67. Nelson, R.M., Lane, A.L., Matson, D.L., Fanale, F.P., Nash, D.B. and Johnson, T.V. (1980) Io: Longitudinal distribution of sulfur dioxide frost, Science, 210, pp. 784–786.ADSCrossRefGoogle Scholar
  68. Owen, T.C., Roush, T.L., Cruikshank, D.P., Elliot, J.L., Young, L.A., de Bergh, C, Schmitt, B., Geballe, T.R., Brown, R.H. and Bartholomew, M.J. (1993) Surface ices and atmospheric composition of Pluto, Science, 261, pp. 745–748.ADSCrossRefGoogle Scholar
  69. Paige, D.A. and Ingersoll, A.P. (1985) Annual heat balance of Martian polar caps: Viking observations, Science, 228, pp. 1160–1168.ADSCrossRefGoogle Scholar
  70. Pearl, J.C, Hanel, R., Kunde, V., Maguire, W., Fox, K., Gupta, S., Ponnamperuma, C. and Raulin, F. (1979) Identification of gaseous SO2 and new upper limits for other gases on Io, Nature, 288, pp. 757–758.Google Scholar
  71. Rages, K. and Pollack, J.B. (1992) Voyager images of Triton’s clouds and hazes, Icarus, 99, p. 289.ADSCrossRefGoogle Scholar
  72. Sagan, C. and Chyba, C. (1990) Triton’s streaks as windblown dust, Nature, 346, p. 546.ADSCrossRefGoogle Scholar
  73. Sartoretti, P., McGrath, M.A. and Paresce, F. (1994) Disk-resolved imaging of Io with the Hubble Space Telescope, Icarus, 108, pp. 272–284.ADSCrossRefGoogle Scholar
  74. Schmitt, B., de Bergh, C, Lellouch, E., Maillard, J.-P., Barbe, A., and Doute, S. (1994) Identification of three absorption bands in the 2-μm spectrum of Io, Icarus, 111, pp. 79–105.ADSCrossRefGoogle Scholar
  75. Sinton, W.M., Lidwall, D., Cheigh, F. and Tittemore, W.C. (1983) Io: The near-infrared monitoring program, 1979-1981, Icarus, 54, pp. 133–157.ADSCrossRefGoogle Scholar
  76. Smith, B.A., Sodderblom, L.A., Banfleld, D., Barnet, C, Basilevsky, A.T., Beebe, R.F., Bollinger, K., Boyce, J.M., Brahic, A., Briggs, G.A., Brown, R.H., et al. (1989) Voyager 2 at Neptune: Imaging science results, Science, 246, pp. 1422–1449.ADSCrossRefGoogle Scholar
  77. Soderblom, L.A., Kieffer, S.W., Becker, T.L., Brown, R.H., Cook, A.F., Hansen, C.J., Johnson, T.V., Kirk, R.L. and Shoemaker, E.M. (1990) Triton’s geyser-like plumes: Discovery and basic characterization, Science, 250, pp. 410–415.ADSCrossRefGoogle Scholar
  78. Spencer, J.R. (1990) Nitrogen Frost Migration on Triton: A Historical Model, Geophys. Res. Lett, 17, pp. 1769–1772.ADSCrossRefGoogle Scholar
  79. Spencer, J.R. and Moore, J.M. (1992) The influence of thermal inertia on temperature and frost stability on Triton, Icarus, 99, pp. 261–272.ADSCrossRefGoogle Scholar
  80. Spencer, J.R. and Schneider, N.M. (1996) Io on the eve of the Galileo mission, Annu. Rev. Earth Planet. Sci., 24, pp. 125–190.ADSCrossRefGoogle Scholar
  81. Spencer, J.R., Stansberry, J.A., Trafton, L.M., Young, E.F., Binzel, R.P. and Croft, S.K. (1997) Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. In Pluto and Charon, D. Tholen and S.A. Stern, eds., (U. Arizona Press, Tucson).Google Scholar
  82. Stansberry, J.A. (1989) Albedo patterns on Triton, Geophys. Res. Lett., 16, pp. 961–964.ADSCrossRefGoogle Scholar
  83. Stansberry, J.A., Lunine, J.I., Porco, C.C., McEwen, A.S. (1990) Zonally averaged thermal balance and stability models for Triton’s polar caps, Geophys. Res. Lett., 17, pp. 1773–1776.ADSCrossRefGoogle Scholar
  84. Stansberry, J.A., Yelle, R.V., Lunine, J.I. and McEwen, A.S. (1992) Triton’s surface-atmosphere energy balance, Icarus, 99, pp. 242–260.ADSCrossRefGoogle Scholar
  85. Stansberry, J.A., Lunine, J.I., Hubbard, W.B., Yelle, R.V. and Hunten, D.M. (1994) Mirages and the Nature of Pluto’s Atmosphere, Icarus, 111, pp. 503–513.ADSCrossRefGoogle Scholar
  86. Stansberry, J.A., Spencer, J.R. and Pearl, J.C. (1995) Triton’s temperature and emissivity: Voyager 2 IRIS data revisited, submitted to J. Geophys. Res.Google Scholar
  87. Stansberry, J.A., Pisano, D.J. and Yelle, R.V. (1996a) The emissivity of nitrogen ice on Triton and Pluto, Planet. Space sci., in press.Google Scholar
  88. Stansberry, J.A., Spencer, J.R., Schmitt, B., Benchkoura, A., Yelle, R.V. and Lunine, J.I. (1996b) A model for the overabundance of methane in Pluto’s atmosphere, Planet. Space. sci., in press.Google Scholar
  89. Stern, S.A. and Trafton, L.M. (1984) Constraints on bulk composition, seasonal variation, and global dynamics of Pluto’s atmosphere, Icarus, 57, pp. 231–240.ADSCrossRefGoogle Scholar
  90. Stern, S.A., Trafton, L.M. and Gladstone, G.R. (1988) Why is Pluto bright? Implications of the albedo and lightcurve behavior of Pluto, Icarus, 75, pp. 485–498.ADSCrossRefGoogle Scholar
  91. Stern, S.A. (1992) The Pluto-Charon system, Annu. Rev. Astron. Astrophys., 30, pp. 185–233.ADSCrossRefGoogle Scholar
  92. Strobel, D.F., Zhu, X. and Summers, M.E. (1994) On the vertical thermal structure of Io’s atmosphere, Icarus, 111, pp. 18–30.ADSCrossRefGoogle Scholar
  93. Strobel, D.F., Zhu, X. and Summers, M.E. (1995) On the vertical thermal structure of Pluto’s atmosphere, Icarus, 120, pp. 266–289.ADSCrossRefGoogle Scholar
  94. Summers, M.E., Strobel, D.F. and Gladstone, G.R. (1997) Chemical models of Pluto’s atmosphere, In Pluto and Charon, D. Tholen and S.A. Stern, eds., (University of Arizona Press, Tucson).Google Scholar
  95. Sykes, M.V., Cutri, R.M., Lebofsky, L.A. and Binzel, R.P. (1987) IRAS serendipitous survey observations of Pluto and Charon, Science, 237, pp. 1336–1340.ADSCrossRefGoogle Scholar
  96. Trafton, L.M. (1984) Large seasonal variations in Triton’s atmosphere, Icarus, 58, pp. 312–324.ADSCrossRefGoogle Scholar
  97. Trafton, L.M. (1990) A two-component volatile atmosphere for Pluto. I. The bulk hydrodynamic escape regime, Astrophys. J., 359, pp. 512–523.ADSCrossRefGoogle Scholar
  98. Trafton, L.M. and Stern, S.A. (1983) On the global distribution of Pluto’s atmosphere, Astrophys. J., 267, pp. 872–881.ADSCrossRefGoogle Scholar
  99. Trafton, L.M. (1989) Pluto’s atmosphere near perihelion, Geophys. Res. Lett., 16, pp. 1213–1216.ADSCrossRefGoogle Scholar
  100. Trafton, L.M., Hunten, D.M., Zahnle, K.J. and McNutt, R.L., Jr. (1997) Escape processes at Pluto and Charon, In Pluto and Charon, D. Tholen and S.A. Stern, eds., (U. Arizona Press, Tucson).Google Scholar
  101. Trafton, L.M., Caldwell, J.J., Barnet, C. and Cunningham, C.C. (1995) The gaseous sulfur dioxide abundance over Io’s leading and trailing hemispheres: HST spectra of Io’s C2B2 — X1A1 band of SO2 near 2100Å, Astrophys. J., 456, pp. 384–3ADSCrossRefGoogle Scholar
  102. Tryka, K.A., Brown, R.H., Cruikshank, D.P. and Owen, T.C. (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton, Science, 261, pp. 751–754.ADSCrossRefGoogle Scholar
  103. Tryka, K.A., Brown, R.H., Cruikshank, D.P., Owen, T.C, Geballe, T.R. and DeBergh, C. (1994) Temperature of nitrogen ice on Pluto and its implications for flux measurements, Icarus, 112, pp. 513–527.ADSCrossRefGoogle Scholar
  104. Tyler, G., Sweetnam, D.N., Anderson, J.D., Borutzki, S.E., Campbell, J.K., Eshleman, V.R., Gresh, D.L., Gurrola, E.M., Hinson, D.P. et al. (1989) Voyager radio science observations of Neptune and Triton, Science, 246, pp. 1466–1473.ADSCrossRefGoogle Scholar
  105. Veeder, G.J., Matson, D.L., Johnson, T.V., Blaney, D.L. and Gougen, J.D. (1994) Io’s heat flow from infrared radiometry: 1983-1993, J. Geophys. Res., Planets, 99, 17095-17161.Google Scholar
  106. Wagman, D.D. (1979) Sublimination Pressure and Enthalpy of SO2, Thermodynamics Data Center, Natl. Bur. Standards, Washington, D.C.Google Scholar
  107. Watson, C.C. (1981) The sputter-generation of planetary coronae: Galilean satellites of Jupiter, Proc. Lunar. Planet. sci. Conf., 12, pp. 1569–1583.ADSGoogle Scholar
  108. Watson, W.O. (1976) Interstellar molecule reactions, Rev. Mod. Phys., 48, pp. 513–552.ADSCrossRefGoogle Scholar
  109. Yelle, R.V. and Lunine, J.I. (1989) Evidence for a molecule heavier than methane in the atmosphere of Pluto, Nature, 339, pp. 288–290.ADSCrossRefGoogle Scholar
  110. Yelle, R.V., Lunine, J.I. and Hunten, D.M. (1991) Energy balance and plume dynamics in Triton’s lower atmosphere, Icarus, 89, pp. 347–358.ADSCrossRefGoogle Scholar
  111. Yelle, R.V. (1992) The effect of surface roughness on Triton’s volatile distribution, Science, 255, pp. 1553–1555.ADSCrossRefGoogle Scholar
  112. Yelle, R.V., Lunine, J.I., Pollack, J.B. and Brown, R.H. (1995) Lower atmospheric structure and surface-atmosphere interactions on Triton. In Neptune and Triton, D.P. Cruikshank, Ed. (University of Arizona Press, Tucson).Google Scholar
  113. Young, E.F. (1993) An albedo map and frost model of Pluto, Dissertation, Massachusetts Institute of Technology.Google Scholar
  114. Young, E.F. and Binzel, R.P. (1994) A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves, Icarus, 108, pp. 219–224.ADSCrossRefGoogle Scholar
  115. Young, L.A. (1994) Bulk properties and atmospheric structure of Pluto and Charon, Dissertation, Massachusetts Institute of Technology.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • L. M. Trafton
    • 1
  • D. L. Matson
    • 2
  • J. A. Stansberry
    • 3
  1. 1.McDonald ObservatoryUniversity of Texas at AustinAustinUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Lowell ObservatoryFlagstaffUSA

Personalised recommendations