Advertisement

Ices in the Giant Planets

  • M. Podolak
  • W. B. Hubbard
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Interior models show that Jupiter and Saturn consist mostly of free hydrogen and helium, while Uranus and Neptune consist mostly of material with a zero-pressure density near 1 g cm−3. The dominant material in Uranus and Neptune is almost certainly ice, while models imply that Jupiter and Saturn each contain roughly one Uranus or Neptune mass of non-hydrogen-helium material which is probably ice. Although the ice component of the giant planets is largely inaccessible to direct observation, a considerable body of indirect evidence suggests that these four planets contain the largest reservoirs of ice in the planetary system.

Keywords

Giant Planet Solar Nebula Hydrogen Equation Outer Planet Metallic Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjoraker, G.L., Larson, H.P. and Kunde, V.G. (1986) The abundance and distribution of water vapor in Jupiter’s atmosphere. Astrophys. J..Google Scholar
  2. Carlson, B.E., Lads, A.A. and Rossow, W.B. (1992) The abundance and distribution of water vapor in the Jovian troposphere as inferred from VOYAGER IRIS observations, Astrophys. J., 388, pp. 648–668.ADSCrossRefGoogle Scholar
  3. Chabrier, G., Saumon, D, Hubbard, W.B. and Lunine, J.I. (1992) The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn, Astrophys. J., 391, pp. 817–826.ADSCrossRefGoogle Scholar
  4. Cieplak, P., Kollman, P. and Lybrand, T. (1990) A new water potential including polarization: application to gas-phase, liquid, and crystal properties of water, J. Chem. Phys., 92, pp. 6755–6760.ADSCrossRefGoogle Scholar
  5. de Pater, I., Romani, P.N. and Atreya, S.K. (1989) Uranus deep atmosphere revealed, Icarus, 82, pp. 288–313.ADSCrossRefGoogle Scholar
  6. Eberhardt, P., Reber, M., Krankowsky, D. and Hodges, R.R. (1995) The D/H and 18O/16O ratios in water from comet P/Halley, Astron. and Astophys. to appear.Google Scholar
  7. Gautier, D. and Owen, T. (1989) The composition of outer planet atmospheres. In: S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 487–512.Google Scholar
  8. Gudkova, T.V., Zharkov, V.N. and Leont’ev, V.V. (1989) Models of Jupiter and Saturn having a two-layer molecular envelope, Sol. Sys. Res. 22, pp. 159–166.ADSGoogle Scholar
  9. Guillot, T., Chabrier, G., Gautier, D. and Morel, P. (1994) Effect of radiative transport on the evolution of Jupiter and Saturn, Astrophys. J., 450, pp. 463–472.ADSCrossRefGoogle Scholar
  10. Hemley, R.J., Jephcoat, A.P., Mao, H.K., Zha, C.S., Finger, L.W. and Cox, D.E. (1987) Static compression of H2O-ice to 128 GPa (1.28Mbar), Nature, 330, pp. 737–740.ADSCrossRefGoogle Scholar
  11. Hubbard, W.B. (1968) Thermal structure of Jupiter, Astrophys. J., 152, pp. 745–754.ADSCrossRefGoogle Scholar
  12. Hubbard, W.B. and MacFarlane, J.J. (1980) Theoretical predictions of deuterium abundances in the jovian planets, Icarus, 44, pp. 676–682.ADSCrossRefGoogle Scholar
  13. Hubbard, W.B. and Marley, M.S. (1989) Optimized Jupiter, Saturn, and Uranus interior models, Icarus, 78, pp. 102–118.ADSCrossRefGoogle Scholar
  14. Kaiser, M.L., Zarka, P., Desch, M.D. and Farrell, W.M. (1991) Restrictions on the characteristics of Neptunian lightning, J. Geophys. Res., 96 suppl., pp. 19,043–19,047.ADSCrossRefGoogle Scholar
  15. Kirk, R.L. and Stevenson, D.J. (1987) Hydromagnetic implications of zonal flows in the giant planets, Astrophys. J., 316, pp. 836–846.ADSCrossRefGoogle Scholar
  16. Lissauer, J.J. (1987) Time scales for planetary accretion and the structure of the proto-planetary disk, Icarus, 69, pp. 249–265.ADSCrossRefGoogle Scholar
  17. Marley, M.S., Gomez, P. and Podolak, M. (1995) Monte Carlo interior models for Uranus and Neptune, J. Geophys. Res., submitted.Google Scholar
  18. Mitchell, A.S. and Nellis, W.J. (1982) Equation of state and electrical conductivity of water and ammonia shocked to 100 GPa (lOMbar) pressure range, J. Chem. Phys., 76, pp. 6273–6281.ADSCrossRefGoogle Scholar
  19. Nellis, W.J., Ree, F.H., van Thiel, M. and Mitchell, A.C. (1981) Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar), J. Chem. Phys., 75, pp. 3055–3063.ADSCrossRefGoogle Scholar
  20. Podolak, M. and Cameron, A.G.W. (1974) Models of the giant planets, Icarus, 22, pp. 123–148.ADSCrossRefGoogle Scholar
  21. Podolak, M., Hubbard, W.B. and Stevenson, D.J. (1991) Models of Uranus’ interior and magnetic field. In: J. Bergstralh, E. Minor, and M. S. Matthews (eds.), Uranus, Univ. of Arizona Press, Tucson, pp. 2–64.Google Scholar
  22. Podolak, M., Hubbard, W.B. and Pollack, J.B. (1993) Gaseous accretion and the formation of giant planets. In: G. Levy, J.I. Lunine and M. Matthews (eds.), Protostars and Planets III Univ. of Arizona Press, Tucson, pp. 1109–1147.Google Scholar
  23. Podolak, M., Weizman, A. and Marley, M. (1995) Comparative models of Uranus and Neptune Planet, and Space sci., to appear.Google Scholar
  24. Radousky, H.B., Mitchell, A.C. and Nellis, W.J. (1990) Shock temperature measurements of planetary ices: NH3, CH4, and “synthetic Uranus”, J. Chem. Phys., 93, pp. 8235–8239.ADSCrossRefGoogle Scholar
  25. Ree, F. (1976) Equation of state of H2O. Report UCRL-52190 Lawrence Livermore Lab., Livermore, California.Google Scholar
  26. Ree, F. (1979) Systematics of high-pressure and high-temperature behavior of hydrocarbons, J. Chem. Phys., 70, pp. 974–983.ADSCrossRefGoogle Scholar
  27. Ross, M. (1981) The ice layer in Uranus and Neptune — diamonds in the sky? Nature, 292, pp. 435–436.ADSCrossRefGoogle Scholar
  28. Stevenson, D.J. and Lunine, J.I. (1988) Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula, Icarus, 75, pp. 146–155.ADSCrossRefGoogle Scholar
  29. Yair, Y., Levin, Z. and Tzivion, S. (1995) Lightning generation in a Jovian thundercloud: results from an axisymmetric numerical cloud model, Icarus, 115, pp. 421–434.ADSCrossRefGoogle Scholar
  30. Zharkov, V.N., Tsarevsky, I.A. and Trubitsyn, V.P. (1978) Equations of state of hydrogen, hydrogen compounds, crystals of inert gases, oxides, iron and FeS. NASA TM 75311.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • M. Podolak
    • 1
  • W. B. Hubbard
    • 2
  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations