Advertisement

The Rings of the Outer Planets

  • Luke Dones
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

All four of the giant planets are encircled by rings. Saturn’s rings were discovered by Galileo in 1610. Huygens was the first to realize, during the 1655–1656 ring-plane crossing, that the changing appearance of the rings results from their varying tilt as Saturn orbits the Sun (van Helden, 1984). Until 1977, Saturn’s rings were thought to be unique. In that year, the narrow, opaque uranian rings were discovered during the occultation of a bright star by Uranus (Elliot and Kerr, 1984). Two years later, Voyager 1 returned the first image of the broad, faint jovian ring, whose existence had been hinted at by a drop in particle fluxes measured by Pioneer 10 in 1976 (Burns et al. 1984). Finally, a stellar occultation in 1984 revealed the existence of incomplete ring ‘arcs’ around Neptune (Hubbard et al. 1986). Voyager 2 subsequently imaged the neptunian rings, and showed that the arcs were the densest component of an extensive system of faint rings (Smith et al. 1989).

Keywords

Giant Planet Main Ring Interstellar Dust Outer Planet Interplanetary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, S. (1991a) Dynamics of planetary rings, American Scientist, 79, pp. 44–59.ADSGoogle Scholar
  2. Araki, S. (1991b) The dynamics of particle disks. III — Dense and spinning particle disks, Icarus, 90, pp. 139–171.MathSciNetADSCrossRefGoogle Scholar
  3. Araki, S. and Tremaine, S. (1986) The dynamics of dense particle disks, Icarus, 65, pp. 83–109.ADSCrossRefGoogle Scholar
  4. Asphaug, E. and Benz, W. (1996) Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup, Icarus, 121, pp. 225–248.ADSCrossRefGoogle Scholar
  5. Bauer, J., Lissauer, J.J. and Simon, M. (1997) Edge-on observations of Saturn’s E and G rings in the near-IR, Icarus, 125, pp. 440–445.ADSCrossRefGoogle Scholar
  6. Becker, L.A., Bada, J., Winans, R.E., et al. (1994) Fullerenes in the 1.8 byr old Sudbury impact structure, Science, 265, pp. 642–645.ADSCrossRefGoogle Scholar
  7. Becker, L., Poreda, R.J. and Bada, J.L. (1996) Extraterrestrial helium trapped in fullerenes in the Sudbury impact structure, Science, 272, pp. 249–252.ADSCrossRefGoogle Scholar
  8. Borderies, N. (1989) Ring dynamics, Cel. Mech. Dyn. Astron., 46, pp. 207–230.ADSzbMATHCrossRefGoogle Scholar
  9. Borderies, N., Goldreich, P. and Tremaine, S. (1984) Unsolved problems in planetary ring dynamics. In: Greenberg, R.J., and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 713–734.Google Scholar
  10. Borderies, N., Goldreich, P. and Tremaine, S. (1985) A granular flow model for dense planetary rings, Icarus, 63, pp. 406–420.ADSCrossRefGoogle Scholar
  11. Bosh, A.S. and Rivkin, A.S. (1995) Satellites of Saturn, Inter. Astron. Union Circular 6192.Google Scholar
  12. Bosh, A.S. and Rivkin, A.S. (1996) Observations of Saturn’s inner satellites during the May 1995 ring-plane crossing, Science, 272, pp. 518–521.ADSCrossRefGoogle Scholar
  13. Brahic, A. (1977) Systems of colliding bodies in a gravitational field. I — Numerical simulation of the standard model, Astron. Astrophys., 54, pp. 895–907.ADSGoogle Scholar
  14. Brahic, A. and Hénon, M. (1977) Systems of colliding bodies in a gravitational field. II — Effect of transversal viscosity, Astron. Astrophys., 59, pp. 1–7.ADSGoogle Scholar
  15. Bridges, F.G., Hatzes, A. and Lin, D.N.C. (1984) Structure, stability and evolution of Saturn’s rings, Nature, 309, pp. 333–335.ADSCrossRefGoogle Scholar
  16. Bridges, F.G., Supulver, K.D., Lin, D.N.C., et al. (1996) Energy loss and sticking mechanisms in particle aggregation in planetesimal formation, Icarus, 123, pp. 422–435.ADSCrossRefGoogle Scholar
  17. Brophy, T.G., Esposito, L.W., Stewart, G.R. and Rosen, P.A. (1992) Numerical simulation of satellite-ring interactions — Resonances and satellite-ring torques, Icarus, 100, pp. 412–433.ADSCrossRefGoogle Scholar
  18. Brophy, T.G. and Rosen, P.A. (1992) Density waves in Saturn’s rings probed by radio and optical occultation — Observational tests of theory, Icarus, 99, pp. 448–467.ADSCrossRefGoogle Scholar
  19. Buratti, B.J., Hillier, J.K. and Wang, M. (1996) The lunar opposition surge: Observations by Clementine, Icarus, 124, pp. 490–499.ADSCrossRefGoogle Scholar
  20. Bunch, T.E., Becker, L., Bada, J., et al. (1996) The effects of hypervelocity impact on carbonaceous compounds: Experimental insights. In: Doyle L.R. (ed.) Circumstellar Habitable Zones. Travis House, Menlo Park, California, pp. 331–350.Google Scholar
  21. Burns, J.A., Showalter, M.R. and Morfill, G.E. (1984) The ethereal rings of Jupiter and Saturn. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 200–272.Google Scholar
  22. Burns, J.A., Schaffer, L.E., Greenberg R.J. and Showalter, M.R. (1985) Lorentz resonances and the structure of the Jovian ring, Nature, 316, pp. 115–119.ADSCrossRefGoogle Scholar
  23. Canup, R.M. and Esposito, L.W. (1995) Accretion in the Roche zone: Coexistence of rings and ring moons, Icarus, 113, pp. 331–352.ADSCrossRefGoogle Scholar
  24. Canup, R.M. and Esposito, L.W. (1997) Evolution of the G Ring and the population of macroscopic ring particles, Icarus, 126, pp. 28–41.ADSCrossRefGoogle Scholar
  25. Cheng, A.F. and Lanzerotti, L.J. (1978) Ice sputtering by radiation belt protons and the rings of Saturn and Uranus, J. Geophys. Res., 83, pp. 2597–2602.ADSCrossRefGoogle Scholar
  26. Chyba, C.F., Thomas, P.J., Brookshaw, L. and Sagan, C. (1990) Cometary delivery of organic molecules to the eartly Earth, Science, 249, pp. 366–373.ADSCrossRefGoogle Scholar
  27. Clark, R.N. (1980) Ganymede, Europa, Callistoand Saturn’s rings — Compositional analysis from reflectance spectroscopy, Icarus 44, pp. 388–409.ADSCrossRefGoogle Scholar
  28. Clark, R.N. and McCord, T.B. (1980) The rings of Saturn — New near-infrared reflectance measurements and a 0.326–4.08 micron summary, Icarus, 43, pp. 161–168.ADSCrossRefGoogle Scholar
  29. Clark, R.N., Fanale, F.P. and Gaffey, M.J. (1986) Surface composition of natural satellites. In: Burns, J.A. and Matthews, M.S. (eds.) Satellites. Arizona, Tucson, pp. 437–491.Google Scholar
  30. Colwell, J.E. (1994) The disruption of planetary satellites and the creation of planetary rings, Planet. Space Sci., 42, pp. 1139–1149.ADSCrossRefGoogle Scholar
  31. Colwell, J.E. and Esposito, L.W. (1990) A model of dust production in the Neptune ring system, Geophys. Res. Lett. 17, pp. 1741–1744.ADSCrossRefGoogle Scholar
  32. Colwell, J.E. and Esposito, L.W. (1992) Origins of the rings of Uranus and Neptune. I — Statistics of satellite disruptions, J. Geophys. Res., 97, pp. 10227–10241.ADSCrossRefGoogle Scholar
  33. Colwell, J.E. and Esposito L.W. (1993) Origins of the rings of Uranus and Neptune. II — Initial conditions and ring moon populations, J. Geophys. Res., 98, pp. 7387–7401.ADSCrossRefGoogle Scholar
  34. Cook, A.F. and Franklin, F.A. (1964) Rediscussion of Maxwell’s Adams Prize essay on the stability of Saturn’s rings, Astron. I., 69, pp. 173–200.MathSciNetADSGoogle Scholar
  35. Cook, A.F. and Franklin, F.A. (1970) The effects of meteoroidal bombardment of Saturn’s rings, Astron. J., 75, pp. 195–205.ADSCrossRefGoogle Scholar
  36. Cooke, M.L. (1991) Saturn’s Rings: Photometric Studies of the C Ring and Radial Variation in the Keeler Gap, unpublished Ph.D. thesis, Cornell.Google Scholar
  37. Cruikshank, D.P., Allamandola, L.J., Hartmann, W.K., et al. (1991) Solid CN-bearing material on outer solar system bodies, Icarus, 94, pp. 345–353.ADSCrossRefGoogle Scholar
  38. Cruikshank, D.P., Brown, R.H., Calvin, W.M. and Roush, T.L. (1997) Ices on the satellites of Jupiter, Saturnand Uranus, in this volume.Google Scholar
  39. Cuzzi, J.N. (1985) Rings of Uranus — Not so thick, not so black, Icarus, 63, pp. 312–316.ADSCrossRefGoogle Scholar
  40. Cuzzi, J.N. (1995) Evolution of planetary ring-moon systems, Earth, Moon, Planets, 67, pp. 179–208.ADSCrossRefGoogle Scholar
  41. Cuzzi, J.N. and Burns, J.A. (1988) Charged particle depletion surrounding Saturn’s F ring — Evidence for a moonlet belt?, Icarus, 74, pp. 284–324.ADSCrossRefGoogle Scholar
  42. Cuzzi, J.N. and Durisen, R.H. (1990) Bombardment of planetary rings by meteoroids — General formulation and effects of Oort Cloud projectiles. Icarus, 84, pp. 467–501.ADSCrossRefGoogle Scholar
  43. Cuzzi, J.N. and Estrada, P.R. (1996) Compositional evolution of Saturn’s rings: Ice, tholin, and “Chiron”-dust, Bull. Amer. Astron. Soc, 28 (abstract) pp. 1124–1125.ADSGoogle Scholar
  44. Cuzzi, J.N., Lissauer, J.J., Esposito, L.W., et al. (1984) Saturn’s rings: Properties and processes. In: Greenberg, R. J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 73–199.Google Scholar
  45. Danielson, G.E., McMuldroch, S., Carlson, R.W., et al. (1997) The jovian ring as seen by the Galileo NIMS at high phase angle (abstract), Bull. Amer. Astron. Soc, 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/Hl710/H1711.html)
  46. Daubar, I.J., Ockert-Bell, M.E., Burns, J.A., et al. (1997) Galileo saw Jupiter’s rings, too (abstract), Bull. Amer. Astron. Soc. 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/H1710/Hl710.html)
  47. Denk, T., Jaumann, R. and Neukum, G. (1995) The distribution of ice and impurities on the icy satellites of Saturn (abstract), Solar System Ices meeting abstract book, p. 29Google Scholar
  48. de Pater, I. and Dickel J.R. (1991) Multifrequency radio observations of Saturn at ring inclination angles between 5 and 26 degrees, Icarus, 94, pp. 474–492.ADSCrossRefGoogle Scholar
  49. de Pater, L, Showalter, M.R., Lissauer, J.J. and Graham, J.R. (1996) Keck infrared observations of Saturn’s E and G Rings during Earth’s 1995 ring plane crossings, Icarus, 121, pp. 195–198.ADSCrossRefGoogle Scholar
  50. Dilley, J.P. (1993) Energy loss in collisions of icy spheres: Loss mechanism and size-mass dependence, Icarus, 105, pp. 225–234.ADSCrossRefGoogle Scholar
  51. Dones, L. (1991) A recent cometary origin for Saturn’s rings?, Icarus, 92, pp. 194–203.ADSCrossRefGoogle Scholar
  52. Dones, L., Cuzzi, J.N. and Showalter, M.R. (1993) Voyager photometry of Saturn’s A Ring, Icarus, 105, pp. 184–215.ADSCrossRefGoogle Scholar
  53. Dones, L., Gladman, B., Melosh, H.J., et al. (1997) Dynamical lifetimes and final fates of small bodies: Orbit integrations vs. Öpik calculations, Icarus, submitted.Google Scholar
  54. Doyle, L.R., Dones, L. and Cuzzi, J.N. (1989) Radiative transfer modeling of Saturn’s outer B ring, Icarus, 80, pp. 104–135.ADSCrossRefGoogle Scholar
  55. Durisen, R.H. (1995) An instability in planetary rings due to ballistic transport, Icarus, 115, pp. 66–85.ADSCrossRefGoogle Scholar
  56. Durisen, R.H., Bode, P.W., Cuzzi, J.N., et al. (1992) Ballistic transport in planetary ring systems due to particle erosion mechanisms. II — Theoretical models for Saturn’s A-and B-ring inner edges, Icarus, 100, pp. 364–393.ADSCrossRefGoogle Scholar
  57. Durisen, R.H., Bode, P.W., Dyck, S., et al. (1996) Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by mete-oroid impacts, Icarus, 124, pp. 220–236.ADSCrossRefGoogle Scholar
  58. Elnszkiewicz, J. (1990) Compaction and internal structure of Mimas, Icarus, 84, pp. 215–225.ADSCrossRefGoogle Scholar
  59. Elliot, J. and Kerr, R. (1984) Rings. MIT, Cambridge, Massachusetts.Google Scholar
  60. Elliot, J.L. and Nicholson, P.D. (1984) The rings of Uranus. In: Greenberg R.J., Brahic A. (eds.) Planetary Rings. Arizona, Tucson, pp. 25–72.Google Scholar
  61. Epstein, E.E., Janssen, M.A. and Cuzzi, J.N. (1984) Saturn’s rings — 3-mm low-inclination observations and derived properties, Icarus, 58, pp. 403–411.ADSCrossRefGoogle Scholar
  62. Esposito, L.W. (1986) Structure and evolution of Saturn’s rings, Icarus, 67, pp. 345–357.ADSCrossRefGoogle Scholar
  63. Esposito, L.W. (1993) Understanding planetary rings, Ann. Rev. Earth Planet. sci., 21, pp. 487–523.ADSCrossRefGoogle Scholar
  64. Esposito, L.W. and Colwell, J.E. (1989) Creation of the Uranus rings and dust bands, Nature, 339, pp. 605–607. Erratum in Nature, 340, p. 322 (1989)ADSCrossRefGoogle Scholar
  65. Esposito, L.W., Cuzzi, J.N., Holberg, J.B., et al. (1984) Saturn’s Rings: Structure, dynamicsand particle properties. In: Gehreis, T. and Matthews, M.S. (eds.) Saturn. Arizona, Tucson, pp. 463–545.Google Scholar
  66. Esposito, L.W., Brahic, A., Burns, J.A. and Marouf, E.A. (1991) Particle properties and processes in Uranus’ rings. In: Bergstralh J.T., Miner E.D., Matthews M.S. (eds.) Uranus. Arizona, Tucson, pp. 410–465.Google Scholar
  67. Estrada, P.R. and Cuzzi, J.N. (1996) Voyager observations of the color of Saturn’s rings, Icarus, 122, pp. 251–272. Erratum in Icarus, 125, p. 474.ADSCrossRefGoogle Scholar
  68. Ferrari, C. and Brahic, A. (1994) Azimuthal brightness asymmetries in planetary rings. 1: Neptune’s arcs and narrow rings, Icarus 111, pp. 193–210.ADSCrossRefGoogle Scholar
  69. Foryta D.W. and Sicardy, B. (1996) The dynamics of the Neptunian Adams Ring’s arcs, Icarus, 123, pp. 129–167.ADSCrossRefGoogle Scholar
  70. French, R.G. and Nicholson, P.D. (1995) Edge waves and librations in the uranian e Ring, Bull. Amer. Astron. Soc, 27, p. 1205.ADSGoogle Scholar
  71. French, R.G., Nicholson, P.D., Porco, C.C. and Marouf, E.A. (1991) Dynamics and structure of the uranian rings. In: Bergstralh J.T., Miner E.D., Matthews M.S. (eds.) Uranus. Arizona, Tucson, pp. 327–409.Google Scholar
  72. Froidevaux, L., Matthews, K. and Neugebauer, G. (1981) Thermal response of Saturn’s ring particles during and after eclipse, Icarus, 46, pp. 18–26.ADSCrossRefGoogle Scholar
  73. Goldreich, P. and Porco, C.C. (1987) Shepherding of the uranian rings. II. Dynamics. Astron. J., 93, pp. 730–737.ADSCrossRefGoogle Scholar
  74. Goldreich, P. and Tremaine, S. (1978) The velocity dispersion in Saturn’s rings, Icarus, 34, pp. 227–239.ADSCrossRefGoogle Scholar
  75. Goldreich, P. and Tremaine, S. (1979) Towards a theory for the Uranian rings, Nature, 277, pp. 97–99.ADSCrossRefGoogle Scholar
  76. Goldreich, P. and Tremaine, S. (1982) The dynamics of planetary rings, Ann. Rev. Astron. Astrophys., 20, pp. 249–283.ADSCrossRefGoogle Scholar
  77. Goldreich, P., Tremaine, S. and Borderies, N. (1986) Towards a theory for Neptune’s arc rings, Astron J., 92, pp. 490–494.ADSCrossRefGoogle Scholar
  78. Gradie, J., Thomas, P. and Veverka, J. (1980) The surface composition of Amalthea, Icarus, 44, pp. 373–387.ADSCrossRefGoogle Scholar
  79. Graps, A.L., Showalter, M.R., Lissauer, J. J. and Kary, D.M. (1995) Optical depth profiles and streamlines of the uranian ∈ Ring, Astron. J., 109, pp. 2262–2273.ADSCrossRefGoogle Scholar
  80. Greenberg, R.J. and Brahic, A., eds. (1984) Planetary Rings. Arizona, Tucson.Google Scholar
  81. Greenberg, R. and Petit, J.-M. (1996) Viscosity in keplerian disks: Steady-state velocity distribution and non-local collision effects, Icarus, 123, pp. 524–535.ADSCrossRefGoogle Scholar
  82. Gresh, D.L., Marouf, E.A. and Tyler, L. (1997) Voyager radio occultation by Uranus’ rings II. Eccentricity gradients, confining satellites, thicknessand particle sizes, Icarus, submitted.Google Scholar
  83. Gresh, D.L., Marouf, E.A., Tyler, L., et al. (1989) Voyager radio occultation by Uranus’ rings. I — Observational results, Icarus 78, pp. 131–168.ADSCrossRefGoogle Scholar
  84. Griffith, C, Moeckel, R., Cruikshank, D., et al. (1995) Near-IR spectra of the surfaces of Titan, Rhea, Iapetus and Enceladus (abstract), Solar System Ices meeting abstract book, p. 51.Google Scholar
  85. Grossman, A.W. (1990) Microwave Imaging of Saturn’s Deep Atmosphere and Rings, unpublished Ph.D. thesis, California Institute of Technology.Google Scholar
  86. Grün, E. (1994) Dust measurements in the outer solar system. In: Milani, A., di Martino, M. and Cellino, A. (eds.), Asteroids, Comets, Meteors 1993 (IAU Symposium 160), p. 367Google Scholar
  87. Grün, E., Zook, H.A., Baguhl, M., et al. (1993) Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft, Nature, 362, pp. 428–430.ADSCrossRefGoogle Scholar
  88. Grün, E., Gustafson, B., Mann, I., et al. (1994) Interstellar dust in the heliosphere, Astron. Astrophys., 286, pp. 915–924.ADSGoogle Scholar
  89. Grün, E., Baguhl, M., Hamilton, D.P., et al. (1996) Constraints from Galileo observations on the origin of jovian dust streams, Nature, 381, pp. 395–398.ADSCrossRefGoogle Scholar
  90. Hall, D.T., Feldman, P.D., Holberg, J.B. and McGrath, M.A. (1996) Fluorescent hydroxyl emissions from Saturn’s ring atmosphere. Science, 272, pp. 516–518.ADSCrossRefGoogle Scholar
  91. Hamilton, D.P. (1996a) The asymmetric time-variable tings of Mars, Icarus, 119, pp. 153–172.MathSciNetADSCrossRefGoogle Scholar
  92. Hamilton D.P. (1996b) Dust from Jupiter’s gossamer ring and the galilean satellites, Bull. Amer. Astron. Soc, 28 (abstract), p. 1123. (http://cass.jsc.nasa.gov/meetings/committee/html/Hl801/H1801.html)ADSGoogle Scholar
  93. Hamilton, D.P. and Burns J.A. (1994) Origin of Saturn’s E Ring: Self-sustained, naturally. Science, 264, pp. 550–553.ADSCrossRefGoogle Scholar
  94. Hänninen, J. and Porco, C. (1997) Collisional simulations of Neptune’s ring arcs. Icarus, 126, pp. 1–27.ADSCrossRefGoogle Scholar
  95. Hapke, B.W., Nelson, R.M. and Smythe, W.D. (1993) The opposition effect of the moon — The contribution of coherent backscatter, Science, 260, pp. 509–511.ADSCrossRefGoogle Scholar
  96. Hapke, B.W., Nelson, R.M. and Smythe, W.D. (1996) The lunar opposition effect revisited, Bull. Amer. Astron. Soc. 28 (abstract) p. 1122. (http://cass.jsc.nasa.gov/meetings/committee/html/H1705/H1705.html)ADSGoogle Scholar
  97. Hatzes, A.P., Bridges, F.G. and Lin, D.N.C. (1988) Collisional properties of ice spheres at low impact velocities, Mon. Not. R. Astron. Soc, 231, pp. 1091–1115.ADSGoogle Scholar
  98. Hatzes, A.P., Bridges, F., Lin, D.N.C. and Sachtjen, S. (1991) Coagulation of particles in Saturn’s rings — Measurements of the cohesive force of water frost, Icarus, 89, pp. 113–121.ADSCrossRefGoogle Scholar
  99. Horányi, M. (1994) New jovian ring? Geophys. Res. Lett., 21, pp. 1039–1042.ADSCrossRefGoogle Scholar
  100. Horányi M. (1996) Charged dust dynamics in the solar system, Ann. Rev. Astron. Astrophys., 34, pp. 383–418.ADSCrossRefGoogle Scholar
  101. Horányi, M., Burns, J.A. and Hamilton, D.P. (1992) The dynamics of Saturn’s E ring particles, Icarus, 97, pp. 248–259.ADSCrossRefGoogle Scholar
  102. Horányi, M. and Cravens, T.E. (1996) The structure and dynamics of Jupiter’s rings. Nature, 381, pp. 293–295.ADSCrossRefGoogle Scholar
  103. Hubbard, W.B., Brahic, A., Sicardy, B., et al. (1986) Occultation detection of a Neptunian ring-like arc, Nature, 319, pp. 636–640.ADSCrossRefGoogle Scholar
  104. Humes, D.H. (1980) Results of Pioneer 10 and 11 meteoroid experiments — Interplanetary and near-Saturn, J. Geophys. Res. 85, pp. 5841–5852.ADSCrossRefGoogle Scholar
  105. Johnson, P.E., Kemp, J.C., King, R., et al. (1980) New results from optical polarimetry of Saturn’s rings, Nature, 283, pp. 146–149.ADSCrossRefGoogle Scholar
  106. Karkoschka, E. (1994) Spectrophotometry of the jovian planets and Titan at 300-to 1000-nm wavelength: The methane spectrum, Icarus, 111, pp. 174–192.ADSCrossRefGoogle Scholar
  107. Karkoschka, E. (1997) Rings and satellites of Uranus: Colorful and not so dark, Icarus, 125, pp. 348–363.ADSCrossRefGoogle Scholar
  108. Kato, M., Iijima, Y.-I. and Arakawa, M. (1995) Ice-on-ice impact experiments, Icarus, 113, pp. 423–441.ADSCrossRefGoogle Scholar
  109. Kuiper, G.P., Cruikshank, D.P. and Fink, U. (1970) The composition of Saturn’s rings. Sky Telescope, 39, p. 14.ADSGoogle Scholar
  110. Leinert, C. and Grün, E. (1990) Interplanetary dust. In: Schwenn R., Marsch E. (eds.) Physics of the Inner Heliosphere. 1. Large-Scale Phenomena. Springer-Verlag, New York.Google Scholar
  111. Levison, H.F. and Duncan, M.J. (1997) From the Kuiper Belt to Jupiter-family comets: The spatial distribution of ecliptic comets, Icarus, 127, pp. 13–32.ADSCrossRefGoogle Scholar
  112. Lissauer, J.J., Goldreich, P. and Tremaine, S. (1985) Evolution of the Janus-Epimetheus coorbital resonance due to torques from Saturn’s rings, Icarus, 64, pp. 425–434.ADSCrossRefGoogle Scholar
  113. Lissauer, J.J., Squyres, S.W. and Hartmann, W.K. (1988) Bombardment history of the Saturn system, J. Geophys. Res., 93, pp. 13776–13804.ADSCrossRefGoogle Scholar
  114. Longaretti, P.-Y. (1989) Saturn’s main ring particle size distribution — An analytic approach, Icarus, 81, pp. 51–73.ADSCrossRefGoogle Scholar
  115. Longaretti, P.-Y. and Rappaport, N. (1995) Viscous overstabilities in dense narrow planetary rings. Icarus, 116, pp. 376–396.ADSCrossRefGoogle Scholar
  116. Marouf, E.A., Gresh, D.L. and Tyler, G.L. (1987) Eccentricity gradients of Uranus’ ∈, β, and f α rings (abstract), Bull. Amer. Astron. Soc, 19, p. 883.ADSGoogle Scholar
  117. Martelli, G., Ryan, E.V., Nakamura, A.M. and Giblin, I. (1994) Catastrophic disruption experiments: Recent results, Planet. Space sci., 42, pp. 1013–1026.ADSCrossRefGoogle Scholar
  118. McDonald, J.S.B., Hatzes, A., Bridges, F. and Lin, D.N.C. (1989) Mass transfer during ice particle collisions in planetary rings. Icarus, 82, pp. 167–179.ADSCrossRefGoogle Scholar
  119. Mekler, Y. and Podolak, M. (1994) Formation of amorphous ice in the protoplanetary nebula, Planet. Space sci., 42, pp. 865–870.ADSCrossRefGoogle Scholar
  120. Mishchenko, M.I. (1993) On the nature of the polarization opposition effect exhibited by Saturn’s rings, Astrophys. J., 411, pp. 351–361.ADSCrossRefGoogle Scholar
  121. Mishchenko, M.I. and Dlugach, Zh.M. (1992) Can weak localization of photons explain the opposition effect of Saturn’s rings?, Mon. Not. R. Astron. Soc, 254, pp. 15P–18P.ADSGoogle Scholar
  122. Mishima, O., Klug, D.D. and Whalley, E. (1983) The far infrared spectrum of ice Ih in the range 8–25 cm−1: Sound waves and difference bands, with application to Saturn’s rings, J. Chem. Phys., 78, pp. 6399–6404.ADSCrossRefGoogle Scholar
  123. Molina, A., Moreno, F., Kidger, M. and Ortiz, J.L. (1995) Near-infrared CVF spectrophotometry of Saturn in 1992, Astron. Astrophys., 298, pp. 624–628.ADSGoogle Scholar
  124. Mosqueira, I. (1996) Local simulations of perturbed dense planetary rings, Icarus, 122, pp. 128–152.ADSCrossRefGoogle Scholar
  125. Mosqueira, I., Estrada, P.R. and Brookshaw, L. (1996) Hydrodynamical simulations of the uranian rings, Bull. Amer. Astron. Soc, 28 (abstract) p. 1126. (http://cass.jsc.nasa.gov/meetings/committee/html/H1814/H1814.html)ADSGoogle Scholar
  126. Murray, C.D. and Giuliatti-Winter, S.M. (1996) Periodic collisions between the moon Prometheus and Saturn’s F ring, Nature, 380, pp. 139–141.ADSCrossRefGoogle Scholar
  127. Mustard, J.F. and Sunshine, J.M. (1995) Seeing through the dust — Martian crustal heterogeneity and links to the SNC meteorites. Science, 267, pp. 1623–1626.ADSCrossRefGoogle Scholar
  128. Nicholson, P.D., Hamilton, D.P., Matthews, K. and Yoder, C.F. (1992) New observations of Saturn’s coorbital satellites, Icarus, 100, pp. 464–484.ADSCrossRefGoogle Scholar
  129. Nicholson, P.D., Showalter, M.R., Dones L., et al. (1996) Observations of Saturn’s ring-plane crossings in August and November 1995. Science, 272, pp. 509–515.ADSCrossRefGoogle Scholar
  130. Nicholson, P.D. and Dones, L. (1991) Planetary rings. Rev. Geophys. Supp., 29, pp. 313–327.ADSGoogle Scholar
  131. Noll, K.S., Roush, T.L., Cruikshank, D.P., et al. (1997) Detection of ozone on Saturn’s satellites Rhea and Dione, Nature, 388, pp. 45–47.ADSCrossRefGoogle Scholar
  132. Ockert, M.E., Cuzzi, J.N., Porco, C.C. and Johnson, T.V. (1987) Uranian ring photometry — Results from Voyager 2, J. Geophys. Res., 92, pp. 14969–14978.ADSCrossRefGoogle Scholar
  133. Olkin, C.B., Bosh, A.S. (1996) The inclination of Saturn’s F Ring (abstract), Bull. Amer. Astron. Soc, 28, p. 1125.ADSGoogle Scholar
  134. Ojakangas, G.W. and Greenberg, R. (1990) Viscosity and mass transport in nonuniform Keplerian disks, Icarus, 88, pp. 146–171.ADSCrossRefGoogle Scholar
  135. Osterbart, R. and Willerding, E. (1995) Collective processes in planetary rings, Planet. Space. sci., 43, pp. 289–298.ADSCrossRefGoogle Scholar
  136. Owen, T., Coradini, A. and Bar-Nun, A. (1995) Why are Saturn’s inner satellites so white? Bull. Amer. Astron. Soc., 27, p. 1167.ADSGoogle Scholar
  137. Pilcher, C.B., Chapman, C.R., Lebofsky, L.A. and Kieffer, H.H. (1970) Saturn’s rings: Identification of water frost. Science, 167, pp. 1372–1373.ADSCrossRefGoogle Scholar
  138. Porco, C.C. (1991) An explanation for Neptune’s ring arcs, Science, 253, pp. 995–1001.ADSCrossRefGoogle Scholar
  139. Porco C.C. (1995) Highlights in planetary rings. Rev. Geophys. Supp. 33, pp. 497–504.ADSCrossRefGoogle Scholar
  140. Porco, C.C., Cuzzi, J.N., Ockert, M.E. and Terrile, R.J. (1987) The color of the Uranian rings, Icarus, 72, pp. 69–78.ADSCrossRefGoogle Scholar
  141. Porco, C.C. and Goldreich, P. (1987) Shepherding of the Uranian rings. I — Kinematics, Astron. J., 93, pp. 724–729.ADSCrossRefGoogle Scholar
  142. Porco, C.C., Nicholson, P.D., Cuzzi, J.N., et al., 1995, Neptune’s ring system. In: Cruikshank, D.P. (ed.) Neptune. Arizona, Tucson, pp. 703–804.Google Scholar
  143. Poulet F. and Sicardy B. (1996) The 1995 Saturn ring-plane crossings: Ring thickness and small inner satellites, Bull. Amer. Astron. Soc., 28, p. 1124 (http//cass.jsc.nasa.gov/meetings/committee/html/H1803/H1803.html)ADSGoogle Scholar
  144. Radicati di Brozolo, F., Bunch, T.E., Fleming, R.H. and Macklin, J. (1994) Fullerenes in an impact crater on the LDEF spacecraft, Nature, 369, pp. 37–40.ADSCrossRefGoogle Scholar
  145. Richardson, D.C. (1994) Tree code simulations of planetary rings, Mon. Not. R. Astron. Soc., 269, pp. 493–511.ADSGoogle Scholar
  146. Roddier, C., Roddier, F., Brahic, A., et al. (1996) Satellites of Saturn, IAU Circular 6515.Google Scholar
  147. Roddier, C., Roddier, F., Graves, J.E. and Northcott, M.J. (1997) Saturn, Inter. Astron. Union. Circular 6697. (also see http://queequeg.ifa.hawaii.edu/latest/saturn.html)
  148. Roddier, F., Brahic, A., Dumas, C., et al., (1996) Satellites of Saturn, Inter. Astron. Union. Circular 6407.Google Scholar
  149. Rosen, P.A., Tyler, G.L., Marouf, E.A. and Lissauer, J.J. (1991) Resonance structures in Saturn’s rings probed by radio occultation. II — Results and interpretation, Icarus, 93, pp. 25–44.ADSCrossRefGoogle Scholar
  150. Salo, H. (1991) Numerical simulations of dense collisional systems, Icarus, 90, 254–270; erratum in Icarus 92, p. 367.ADSCrossRefGoogle Scholar
  151. Salo, H. (1992) Gravitational wakes in Saturn’s rings, Nature 359, pp. 619–621.ADSCrossRefGoogle Scholar
  152. Salo H. (1995) Simulations of dense planetary rings. III. Self-gravitating identical particles, Icarus, 117, pp. 287–312.ADSCrossRefGoogle Scholar
  153. Schaffer, L.E. and Burns, J.A. (1987) The dynamics of weakly charged dust — Motion through Jupiter’s gravitational and magnetic fields, 7. Geophys. Res., 92, pp. 2264–2280.ADSCrossRefGoogle Scholar
  154. Schmit, U. and Tscharnuter, W.M. (1995) A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring, Icarus, 115, pp. 304–319.ADSCrossRefGoogle Scholar
  155. Schmitt, B., Espinasse, S., Grim R.J.A., et al. (1989) Laboratory studies of cometary ice analogues. In: Physics and Mechanics of Cometary Materials (ESA SP 302), pp. 65–69.Google Scholar
  156. Shoemaker, E.M. and Shoemaker, C.S. (1990) The collision of solid bodies. In: Beatty, J.K. and Chaikin A. (eds.) The New Solar System. Cambridge, New York, pp. 259–274.Google Scholar
  157. Showalter, M.R. (1991) Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap, Nature, 351, pp. 709–713.ADSCrossRefGoogle Scholar
  158. Showalter, M.R. (1995) Arcs and clumps in the uranian λ Ring, Science, 267, pp. 490–493.ADSCrossRefGoogle Scholar
  159. Showalter, M.R. (1996a) Saturn’s D Ring in the Voyager images, Icarus, 124, pp. 677–689.ADSCrossRefGoogle Scholar
  160. Showalter, M.R., (1997) Bull. Amer. Astron. Soc, 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/H1704/H1704.html)
  161. Showalter, M.R., Bollinger, K.J., Cuzzi, J.N. and Nicholson, P.D. (1996) The Rings Node for the Planetary Data System, Planet. Space sci., 44, pp. 33–45.ADSCrossRefGoogle Scholar
  162. Showalter, M.R., Burns, J.A., Cuzzi, J.N. and Pollack, J.B. (1987) Jupiter’s ring system — New results on structure and particle properties, Icarus, 69, pp. 458–498.ADSCrossRefGoogle Scholar
  163. Showalter, M.R. and Cuzzi, J.N. (1993) Seeing ghosts — Photometry of Saturn’s G Ring, Icarus, 103, pp. 124–143.ADSCrossRefGoogle Scholar
  164. Showalter, M.R., Cuzzi, J.N. and Larson, S.M. (1991) Structure and particle properties of Saturn’s E Ring, Icarus, 94, pp. 451–473.ADSCrossRefGoogle Scholar
  165. Shu, F.H., Cuzzi, J.N. and Lissauer, J.J. (1983) Bending waves in Saturn’s rings, Icarus, 53, pp. 185–206.ADSCrossRefGoogle Scholar
  166. Shu, F.H., Dones, L., Lissauer, J. J., et al. (1985) Nonlinear spiral density waves — Viscous damping, Astrophys. J., 299, pp. 542–573.ADSCrossRefGoogle Scholar
  167. Shu, F.H. and Stewart, G.R. (1985) The collisional dynamics of particulate disks, Icarus, 62, pp. 360–383.ADSCrossRefGoogle Scholar
  168. Smith, B.A., Soderblom, L., Batson, R., et al. (1982) A new look at the Saturn system — The Voyager 2 images, Science, 215, pp. 504–537.ADSCrossRefGoogle Scholar
  169. Smith, B.A., Soderblom, L.A., Banfield, D., et al. (1989) Voyager 2 at Neptune — Imaging science results, Science, 246, pp. 1422–1449.ADSCrossRefGoogle Scholar
  170. Smoluchowski, R. (1978) Amorphous ice on Saturnian rings and on icy satellites. Science, 201, pp. 809–811.ADSCrossRefGoogle Scholar
  171. Stewart, G.R., Lin, D.N.C. and Bodenheimer, P. (1984) Collision-induced transport processes in planetary rings. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 447–512.Google Scholar
  172. Supulver, K.D., Bridges, F.G. and Lin, D.N.C (1995) The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces, Icarus, 113, pp. 188–199.ADSCrossRefGoogle Scholar
  173. Taylor, A.D., Baggaley, W.J. and Steel, D.I. (1996) The discovery of interstellar dust entering the Earth’s atmosphere, Nature 380, pp. 323–325.ADSCrossRefGoogle Scholar
  174. Tholen, D.J. and Barucci, M.A. (1989) Asteroid taxonomy. In: Binzel, R.P., Gehreis, T. and Matthews, M.S. (eds.) Asteroids II. Arizona, Tucson, pp. 298–315.Google Scholar
  175. Thomas, P., Veverka, J. and Dermott, S. (1986) Small satellites. In: Burns, J.A. and Matthews, M.S. (eds.) Satellites. Arizona, Tucson, pp. 802–835.Google Scholar
  176. Thomas, P., Weitz, C. and Veverka, J. (1989) Small satellites of Uranus — Disk-integrated photometry and estimated radii, Icarus 81, pp. 92–101.ADSCrossRefGoogle Scholar
  177. Throop, H.B. and Esposito, L.W. (1997) G Ring particle sizes derived from ring plane crossing observations, Icarus, submittedGoogle Scholar
  178. van Helden, A. (1984) Rings in astronomy and cosmology, 1600–1900. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 12–22.Google Scholar
  179. Veverka, J., Thomas, P., Davies, M. and Morrison, D. (1981) Amalthea: Voyager imaging results, J. Geophys. Res., 86, pp. 8675–8692.ADSCrossRefGoogle Scholar
  180. Wilson, P.D., Sagan, C. and Thompson, W.R. (1994) The organic surface of 5145 Pholus: Constraints set by scattering theory, Icarus, 107, pp. 288–303.ADSCrossRefGoogle Scholar
  181. Wilson, P.D. and Sagan, C. (1995) Spectrophotometry and organic matter on Iapetus. 1: Composition models, J. Geophys. Res., 100, pp. 7531–7537.ADSCrossRefGoogle Scholar
  182. Wisdom, J. and Tremaine, S. (1988) Local simulations of planetary rings, Astron. J., 95, pp. 925–940.ADSCrossRefGoogle Scholar
  183. Zebker, H.A., Marouf, E.A. and Tyler, G.L. (1985) Saturn’s rings — Particle size distributions for thin layer models. Icarus, 64, pp. 531–548.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Luke Dones
    • 1
    • 2
  1. 1.NASA amesMoffett FieldUSA
  2. 2.San Jose State University FoundationUSA

Personalised recommendations