Advertisement

Surface-Atmosphere Interactions on Titan

  • Jonathan I. Lunine
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

The solar system’s second-largest moon, Saturn’s satellite Titan, possesses a thick atmosphere rich in organics beneath which lies a surface whose character remains hidden. While the atmosphere was explored in fair detail during the Voyager 1 flyby of Titan in 1980, information about the surface has been scanty but growing through a suite of ground-based and Earth orbital data spanning the 15 years since Voyager. Ultimately the joint U.S.-European Cassini-Huygens missions will (hopefully) reveal the true nature of the surface. Whatever that nature may be, the mass and energy exchange between the surface and atmosphere is likely to be complex, probably comparable to that of the Earth prior to the origin of life. Titan’s surface-atmosphere system may provide us with a laboratory for studying the evolution of organic-rich but abiotic planetary evolution (Lunine and McKay, 1995).

Keywords

Atmospheric Methane Small Crater Tidal Dissipation Solar Luminosity Huygens Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chyba, CF., Thomas, P.J. and Zahnle, K.J. (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid, Nature, 361, pp. 40–44.ADSCrossRefGoogle Scholar
  2. Courtin, R., Gautier, D. and McKay, O.P. (1995) Titan’s thermal emission spectrum: Re-analysis of the Voyager infrared measurements, Icarus, 114, pp. 144–162.ADSCrossRefGoogle Scholar
  3. Coustenis, A., Lellouch, E., Maillard, J.P. and McKay, C.P. (1995) Titan’s surface: Composition and variability from the near-infrared albedo, Icarus, submitted.Google Scholar
  4. Cynn, H.C., Boone, S., Koumvakalis, A., Nicol, M. and Stevenson, D.J. (1989) Phase diagram for ammonia-water at high pressures: Implications for icy satellites, Proc. Lunar Pianet. sci. Conf., 19, pp. 433–441.ADSGoogle Scholar
  5. Dermott, S.F. and Sagan, C. (1995) Tidal effects of disconnected hydrocarbon seas on Titan, Nature, 374, pp. 238–240.ADSCrossRefGoogle Scholar
  6. Dubouloz, N., Raulin, F., Lellouch, E. and Gautier, D. (1989) Titan’s hypothesized ocean properties: The influence of surface temperature and atmospheric composition uncertainties, Icarus, 82, pp. 81–96.ADSCrossRefGoogle Scholar
  7. Engel, S., Lunine, J.I. and Norton, D.L. (1994). Silicate interactions with ammonia-water fluids on early Titan. J. Geophys. Res., 99, pp. 3745–3752.ADSCrossRefGoogle Scholar
  8. Engel, S., Lunine, J.I. and Hartmann, W.K. (1995). Cratering on Titan and implications for Titan’s atmospheric history. Planet. Space sci., in press.Google Scholar
  9. Farinella, P., Paolicchi, P., Strom, R.G., Kargel, J.S. and Zappala, V. (1990) The fate of Hyperion’s fragments, Icarus, 83, pp. 186–204.ADSCrossRefGoogle Scholar
  10. Griffith, C.A. (1993) Evidence for surface heterogeneity on Titan, Nature, 364, pp. 511–514.ADSCrossRefGoogle Scholar
  11. Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Calicott, T.A. and Williams, M.W. (1984) Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies, Icarus, 60, pp. 127–137.ADSCrossRefGoogle Scholar
  12. Kossacki, K.J. and Lorenz, R.D. (1995) Hiding Titan’s ocean: densification and hydrocarbon storage in an icy regolith, Planet. Space sci., submitted.Google Scholar
  13. Lara, L.M., Lorenz, R.D. and Rodrigo, R. (1994) Liquids and solids on the surface of Titan: results of a new photochemical model, Planet. Space sci., 42, pp. 5–14.ADSCrossRefGoogle Scholar
  14. Lebreton, J.P. (1992) The Huygens probe, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 287–292.Google Scholar
  15. Lemmon, M.T., Karkoschka, E. and Tomasko, M. (1995) Titan’s rotational light-curve, Icarus, 113, pp. 27–38.ADSCrossRefGoogle Scholar
  16. Lorenz, R.D. (1993a). The surface of Titan in the context of ESA’s Huygens probe, ESA Journal, 17, pp. 275–292.ADSGoogle Scholar
  17. Lorenz, R.D. (1993b). The life, death and afterlife of a raindrop on Titan, Planet. Space sci., 41, pp. 647–655.ADSCrossRefGoogle Scholar
  18. Lorenz, R.D. (1995a) Pillow lava on Titan: Expectations and constraints on current cryovolcanic activity, Planetary and Space Science, submitted.Google Scholar
  19. Lorenz, R.D. (1995b) Cassini mission: radar sensing of craters on Titan. Lunar Planet. sci. Conf., 26, pp. 863–864.ADSGoogle Scholar
  20. Lorenz, R.D., Lunine, J.I., Grier, J. and Fisher, M. (1995) Prediction of aeolian features on planets: Application to Titan paleoclimatology, J. Geophys. Res., submitted.Google Scholar
  21. Lunine, J.I. (1992) Plausible surface models for Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 233–239.Google Scholar
  22. Lunine, J.I. (1993) Does Titan have an ocean? A review of current understanding of Titan’s surface. Rev. Geophysics, 31, pp. 133–149 [Erratum 31, p. 355]ADSCrossRefGoogle Scholar
  23. Lunine, J.I. and Stevenson, D. J. (1987) Clathrate and ammonia hydrates at high pressure: Application to the origin of methane on Titan, Icarus, 70, pp. 61–77.ADSCrossRefGoogle Scholar
  24. Lunine, J.I., Atreya, S.K. and Pollack, J.B. (1989) Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto, in Origin and Evolution of Planetary and Satellite Atmospheres, eds. S.K. Atreya, J.B. Pollack and M.S. Matthews, Univ. Arizona Press, Tucson, pp. 605–665.Google Scholar
  25. Lunine, J.I. and McKay, C.P. (1995) Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth, Adv. Space Res., 15, pp. 303–311.ADSCrossRefGoogle Scholar
  26. Lunine, J.I. and Rizk, B. (1989) Thermal evolution of Titan’s atmosphere, Icarus, 80, pp. 370–389.ADSCrossRefGoogle Scholar
  27. Matson, D.L. (1992) Cassini-a mission to Saturn and Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 281–286.Google Scholar
  28. McKay, C.P., Pollack, J.B. and Courtin, R. (1989) The thermal structure of Titan’s atmosphere, Icarus, 80, pp. 23–53.ADSCrossRefGoogle Scholar
  29. McKay, C.P., Pollack, J.B., Lunine, J.I. and Courtin, R. (1993) Coupled atmosphere-ocean models of Titan’s past, Icarus, 102, pp. 88–98.ADSCrossRefGoogle Scholar
  30. McKay, C.P., Martin, S.O., Griffith, C.A. and Keller, R.M. (1996) Temperature lapse rate and methane in Titan’s troposphere, Icarus, in press.Google Scholar
  31. Muhleman, D.O., Grossman, A.W., Butler, B.J. and Slade, M.A. (1995) Radar investigations of Mars, Mercury and Titan, Ann. Rev. Earth and Planetary sci., 23, pp. 337–374.ADSCrossRefGoogle Scholar
  32. Rinaldo, A., Dietrich, W.E., Rigon, R., Vogel, G.K. and Rodriquez-Iturbe, I. (1995) Geomorphological signatures of varying climate, Nature,374, pp. 632–635.ADSCrossRefGoogle Scholar
  33. Sagan, C. and Dermott, S.F. (1982) The tides in the seas of Titan, Nature, 300, pp. 731–733.ADSCrossRefGoogle Scholar
  34. Sears, W.D. (1995) Tidal dissipation in oceans on Titan, Icarus, 113, pp. 39–56.ADSCrossRefGoogle Scholar
  35. Smith, P.H., Lemmon, M.T., Lorenz, R.D., Sromovsky, L.A., Caldwell, J.J. and Allison, M.D. (1995) Titan’s surface, revealed by HST imaging, Icarus, submitted.Google Scholar
  36. Strobel, D.F., Hall, D.T., Zhu, X. and Summers, M.E. (1993) Upper limit on Titan’satmospheric argon abundance, Icarus, 103, pp. 333–336.ADSCrossRefGoogle Scholar
  37. Stevenson, D.J. (1992) Interior of Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 29–33.Google Scholar
  38. Toublanc, D., Parisot, J.P., Brillet, J., Gautier, D., Raulin, F. and McKay, O.P. (1995) Photochemical modeling of Titan’s atmosphere. Icarus. 113, pp. 2–26. (Erratum in press).ADSCrossRefGoogle Scholar
  39. Yung, Y.L., Allen, M. and Pinto, J.P. (1984). Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J., 55, pp. 465–506.ADSCrossRefGoogle Scholar
  40. Zahnle, K.J. (1992). Airburst origin of dark shadows on Venus. J. Geophys. Res., 97, pp. 10243–10255.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Jonathan I. Lunine
    • 1
  1. 1.Lunar and Planetary LaboratoryThe University of ArizonaTucsonUSA

Personalised recommendations