Advertisement

Geologic Landforms and Processes on Icy Satellites

  • Paul M. Schenk
  • Jeffrey M. Moore
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

During the first reconaissence of the satellites of the outer solar system conducted by the Voyager missions (1979–1989), a surprising diversity of unusual geologic landforms were observed, in some cases with bewildering complexity (e.g., Triton). Impact features were certainly expected but the variety of volcanic, diapiric, tectonic, impact, and erosional landforms was only remotely suggested by some early theoretical works. These diagnostic features are manifestations of the internal composition, thermal history, and dynamical evolution of these bodies. It is the job of the geologist to interpret the morphology, stratigraphy, and composition of these deposits and structures to ascertain what materials were mobilized in the interior, in what amount, and the mechanism and cause of their mobilization. In this chapter, we review what is know about these features and what constraints can be placed on composition and thermal history. Particular emphasis is placed on volcanic features, as these are most directly related to satellite composition and thermal history.

Keywords

Impact Crater Lunar Planet Galilean Satellite Outer Solar System Saturnian Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, M.L. and Clifford, S.M. (1987) Ice-covered water volcanism on Ganymede, J. Geophys. Res., 92, pp. 7865–7876.ADSCrossRefGoogle Scholar
  2. Casacchia, R. and Strom, R. (1984) Geologic evolution of Galileo Regio, Ganymede, Proc. Lunar Planet. sci. Conf: 14th. Part 2. J. Geophys. Res., 89, pp. B419–B428.ADSCrossRefGoogle Scholar
  3. Chester, D.K, Duncan, AM., Guest, J.E. and Kilburn, C.R.J. (1985) Mount Etna, The Anatomy of a Volcano, Stanford Univ. Press, Stanford, Calif.Google Scholar
  4. Coates, D.R. (1977) Landslide perspectives, Rev. Eng. Geol, 3, pp. 3–28.Google Scholar
  5. Collins, G. and Schenk, P. (1994) Triton’s lineaments: Complex morpology and stress patterns, lunar Planet. sci., XXV, pp. 277–278.Google Scholar
  6. Consolmagno, G.J. (1985) Resurfacing Saturn’s satellites: Models of partial differentiation and expansion, Icarus, 64, pp. 401–413.ADSCrossRefGoogle Scholar
  7. Croft, S.K. and Soderblom, L.A. (1991) Geology of the Uranian satellites. In: Uranus, edited by J. Bergstrahl, E. Miner, and M. Matthews. Univ. of Ariz. Press, Tucson, pp. 561–628.Google Scholar
  8. Croft, S.K., Kargel, J.S., Kirk, R.L., Moore, J.M., Schenk P.M. and Strom, R.G. (1995) The geology of Triton. In: Neptune and Triton, edited by D.P. Cruikshank, Univ. of Ariz. Press. Tucson, pp. 879–947.Google Scholar
  9. Cruikshank, D. and Moore, J. (1995) Geology of Pluto. In: Pluto and Charon, Univ. of Ariz. Press, Tucson, in press.Google Scholar
  10. Durham, W.B., Heard, H.C. and Kirby, S.H. (1983) Experimental deformation of crystalline (H2O) ice at high pressure and low temperature: Preliminary results, Proc. Lunar Planet. Sci. Conf: 14th, Part 1, J. Geophys. Res., 88, suppl., pp. B377–B392.ADSCrossRefGoogle Scholar
  11. Durham, W.B., Kirby, S.H. and Stern, L.A. (1992) Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys Res., 97, pp. 20,883–20,897.ADSCrossRefGoogle Scholar
  12. Ellsworth, K. and Schubert, G. (1983) Saturn’s icy satellites: Thermal and structural models, Icarus, 54 pp. 490–510.ADSCrossRefGoogle Scholar
  13. Fink, J.H., Bridges, N.T. and Grimm, R.E. (1993) Shapes of Venusian “pancake” domes imply episodic emplacement and silicic composition, Geophys. Res. Lett., 20, pp. 261–264.ADSCrossRefGoogle Scholar
  14. Golombek, M. (1981) Constraints on the expansion of Ganymede and the thickness of the lithosphere, J. Geophys. Res. Suppl., 87, pp. A77–A83.ADSCrossRefGoogle Scholar
  15. Greenberg, R., Croft, S.K., Janes, D.M., Kargel, J.S., Lebovsky, L.A., Lunine, J.I., Marcialis, R.L., Melosh, H.J., Ojakangas, G.W. and Strom, R.G. (1991) Miranda. In: Uranus, edited by J. Bergstrahl, E. Miner, and M. Matthews, Univ. of Ariz. Press, Tucson, pp. 693–737.Google Scholar
  16. Helfenstein, P. (1986) Derivation and analysis of geological constraints on the emplacement and evolution of terrains on Ganymede from applied differential photometry, Ph.D. dissertation, Brown Univ., Providence. RI, 414 pp.Google Scholar
  17. Hillgren, V. and Melosh, H.J. (1989) Crater relaxation on Ganymede: Implications for ice rheology, Geophys. Res. Lett., 16, pp. 1339–1342.ADSCrossRefGoogle Scholar
  18. Honer, V.M. and Greeley, R. (1982) Pedestal craters on Ganymede, Icarus, 51, pp. 549–562.ADSCrossRefGoogle Scholar
  19. Horstman, K C. and Melosh, H.J. (1989) Drainage pits in cohesionless materials: Implications for the surface of Phobos. J. Geophys. Res., 94, pp. 12,433–12,441.ADSCrossRefGoogle Scholar
  20. Jackson, M.P.A., Cornelius, R.R., Craig, C.H., Gansser, A., Stocklin, J., and Talbot C.J. (1990) Salt diapirs of the Great Kavir, Central Iran. Mem. Geol. Soc. Am., 177, 140 pp.Google Scholar
  21. Janes, D.M. and Melosh, H.J. (1988) Sinker tectonics: An approach to the surface of Miranda, J. Geophys Res., 93, pp. 3127–3143.ADSCrossRefGoogle Scholar
  22. Jankowski, D.G. and Squyres, S.W. (1988) Solid-state ice volcanism on the satellites of Uranus, Science, 241, pp. 1322–1325.ADSCrossRefGoogle Scholar
  23. Johnson. T.V. and McGetchin, T.R. (1973) Topography on satellite surfaces and the shape of asteroids, Icarus, 18, pp. 612–620.ADSCrossRefGoogle Scholar
  24. Kargel, J.S. (1991) Brine volcanism and the interiors of asteroids and icy satellites, Icarus, 94, pp. 368–390.ADSCrossRefGoogle Scholar
  25. Kargel, J.S. (1997) Physical chemistry of volatile mixtures at low temperatures with application to cryovolcanism on the icy satellites. Paper presented at Solar System Ices, Toulouse, France, March 27-30, 1995.Google Scholar
  26. Kargel, J., Croft, S., Lunine, J.I. and Lewis, J.S. (1991) Rheological properties of anmonia-water liquids and crystal-liquid slurries: Planetological applications, Icarus, 89, pp. 93–112.ADSCrossRefGoogle Scholar
  27. Kirby, S.H., Durham, W.B., Beeman, M.L., Heard, H.C. and Daley, M.A. (1987) Inelastic properties of ice Ih at low temperatures and high pressures, J. Phys., 48, pp. Cl-227-Cl-232.Google Scholar
  28. Kirk, R. and Stevenson, D. (1987) Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 69, pp. 91–134.ADSCrossRefGoogle Scholar
  29. Lewis, J.S. (1972) Low temperature condensation from the solar nebula, Icarus, 16, 241–252, 1972.ADSCrossRefGoogle Scholar
  30. Lucchitta, B.K. (1980) Grooved terrain on Ganymede, Icarus, 44, pp. 481–501.ADSCrossRefGoogle Scholar
  31. Lucchitta, B.K. and Soderblom, L.A. (1982) Geology of Europa. In: Satellites of Jupiter, edited by D. Morrison, Univ. of Ariz. Press. Tucson, pp. 521–555.Google Scholar
  32. Lunine, J.I. and Stevenson, D.J. (1982) Formation of the Galilean satellites in a gaseous nebula, Icarus, 52, pp. 14–39.ADSCrossRefGoogle Scholar
  33. Malhotra, R. (1991) Tidal origin of Laplace resonance and the resurfacing of Ganymede, Icarus, 94, pp. 399–412.ADSCrossRefGoogle Scholar
  34. Malhotra, R. and Dermott, S.F. (1990) The role of secondary resonances in the orbital history of Miranda, Icarus, 85, pp. 444–480.ADSCrossRefGoogle Scholar
  35. Malin, M.C. (1992) Mass movements on Venus: Preliminary results from Magellan cycle I observations, J. Geophys. Res., 97, pp. 16337–16352.ADSCrossRefGoogle Scholar
  36. Malin, M.C and Dzurisin, D. (1977) Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships, J. Geophys. Res., 82, pp. 376–388.ADSCrossRefGoogle Scholar
  37. McEwen, A. (1986) Tidal reorientation and the fracturing of Europa, Nature, 321, pp. 49–51.ADSCrossRefGoogle Scholar
  38. McCauley, J.F., Smith, B.A. and Soderblom, L.A. (1979) Erosional scarps on Io, Nature, 280, pp. 736–738.ADSCrossRefGoogle Scholar
  39. McKinnon, W.B. (1981) Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede, Proc. Lunar Planet. sci. Conf., 12B, pp. 1585–1597.ADSGoogle Scholar
  40. McKinnon, W.B. (1984) On the origin of Triton and Pluto, Nature, 311, pp. 355–358.ADSCrossRefGoogle Scholar
  41. McKinnon, W.B. and Melosh, H.J. (1980) Evolution of planetary lithospheres: Evidence from multiring basins on Ganymede and Callisto, Icarus, 44, pp. 454–471.ADSCrossRefGoogle Scholar
  42. McKinnon, W.B. and Parmentier, E.M. (1986) Ganymede and Callisto. In: Satellites, edited by J.A. Burns and M. Matthews, Univ. of Ariz. Press, Tucson, pp. 718–763.Google Scholar
  43. McKinnon. W.B., Chapman, C.R. and Housen, K.R. (1990) Cratering of the Uranian satellites. In: Uranus, edited by J. Bergstralh, E. Miner, and M. Matthews, Univ. of Ariz. Press, Tucson, pp. 629–692.Google Scholar
  44. Melosh, H.J. (1989) Impact Cratering. Cambridge Univ. Press, New York.Google Scholar
  45. Melosh. H.J. and Janes, D.M. (1989) Icy volcanism on Ariel (technical comment), Science, 245, pp. 195–196.ADSCrossRefGoogle Scholar
  46. Melosh, H.J. and Schenk, P. (1993) Split comets and the origin of crater chains on Ganymede, Nature, 365, pp. 731–733.ADSCrossRefGoogle Scholar
  47. Milton, D.J., Barlow, B.C., Brett, R., Brown, A.R., Glikson, A.Y., Manwaring, E.A., Moss, F.J., Sedmik, E.C.E., Van Son J. and Young, G.A. (1972) Gosses Bluff impact structure, Australia, Science, 175, pp. 1199–1207.ADSCrossRefGoogle Scholar
  48. Moore, J.M. (1984) The volcanic and tectonic history of Dione, Icarus, 59, pp. 205–220.ADSCrossRefGoogle Scholar
  49. Moore, J.M. and Ahern, J.L. (1983) The geology of Tethys, J. Geophys. Res., 88, pp. A577–A584.ADSCrossRefGoogle Scholar
  50. Moore, J.M., Horner, V.M. and Greeley, R. (1985) The geomorphology of Rhea: Implications for geologic history and surface processes, J. Geophys. Res., 90, pp. C785–C795.ADSCrossRefGoogle Scholar
  51. Moore, J.M. and Malin, M.C. (1988) Dome craters on Ganymede, Geophys. Res. Lett., 15, pp. 225–228.ADSCrossRefGoogle Scholar
  52. Moore, J.M., Mellon, M. and Zent, A.P. (1996) Mass wasting and ground collapse in terrains of volatile-rich deposits as a Solar System-wide process: A pre-Galileo view, Icarus, 122, pp. 63–78.ADSCrossRefGoogle Scholar
  53. Moore, J.M. and Spencer, J.R. (1990) Koyaanismuuyaw: The hypothesis of a perennially dichotomous Triton, Geophys. Res. Lett., 17, pp. 1757–1760.ADSCrossRefGoogle Scholar
  54. Moore, J.M. and Zent, A.P. (1994) Landform degradation and mass wasting on the Galilean satellites, paper presented at Icy Galilean Satellites: An International Conference, San Juan Capistrano Inst, San Juan Capistrano, Calif., Feb. 1–3, 1994.Google Scholar
  55. Moore, J.M., Zent, A.P. and Cruikshank, D.P. (1993) Mass wasting and ground collapse in terrains of volatile-rich deposits on Mars and some outer-planet satellites. Bull. Amer. Astron. Soc, 25, p. 1112.ADSGoogle Scholar
  56. Murchie, S.L., Head, J.W. and Plescia, J.B. (1990) Tectonic and volcanic evolution of dark terrain and its implications for the internal structure and evolution of Ganymede, J. Geophys. Res., 95, pp. 10,743–10,768.ADSCrossRefGoogle Scholar
  57. Pappalardo, R.T (1994) The origin and evolution of ridge and trough terrain and the geological history of Miranda. Ph.D. Thesis. Ariz. State Univ, Tempe.Google Scholar
  58. Pappalardo, R.T. and Greeley, R. (1995) A review of the origins of subparallel ridges and troughs: generalized morphological predictions from terrestrial models, J. Geophys. Res., 100, pp. 18,985–19,007.ADSCrossRefGoogle Scholar
  59. Parmentier, E.M., Squyres, S.W., Head, J.W. and Allison, M.L. (1983) The tectonics of Ganymede, Nature, 295, pp. 290–293.ADSCrossRefGoogle Scholar
  60. Passey, Q.R. (1983) Viscosity of the lithosphere of Enceladus, Icarus, 53, pp. 105–120.ADSCrossRefGoogle Scholar
  61. Passey, Q. and Shoemaker, E. (1982) Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution. In: Satellites of Jupiter, edited by D. Morrison, Univ. of Arizona Press, Tucson, pp. 379–434.Google Scholar
  62. Pieters, C.M. (1986) Composition of the lunar highlands crust from near-infrared spectroscopy, Rev. Geophys., 24, pp. 557–578.ADSCrossRefGoogle Scholar
  63. Pike, R. J. (1980) Control of crater morphology by gravity and target type: Mars, Earth, Moon. Proc. Lunar Planet. Sci. Con., 11th, pp. 2159–2189.Google Scholar
  64. Plescia, J.B. (1983) The geology of Dione, Icarus, 56 pp. 255–277.ADSCrossRefGoogle Scholar
  65. Pozio, S. and Kargel, J.S. (1989) The tectonic and igneous evolution of Enceladus (abstract), Lunar Planet. sci., XX, pp. 864–865.ADSGoogle Scholar
  66. Prinn, R.G. and Fegley, B. (1989) Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles, in Origin and evolution of planetary and satellite atmospheres, edited by S.K. Atreya, J.B. Pollack, and M. Matthews, eds., Univ. of Ariz. Press, Tucson, pp. 78–136.Google Scholar
  67. Quaide, W.L. and Oberbeck, V.R. (1968) Thickness determinations of lunar surface layer from lunar impact craters, J. Geophys. Res., 73, pp. 5247–5270.ADSCrossRefGoogle Scholar
  68. Remsberg, A.R. (1981) A structural analysis of Valhalla Basin, Callisto, (abstract), Lunar Planet sci., XII pp. 874–876.ADSGoogle Scholar
  69. Schenk, P.M. (1989) Crater formation and modification on the icy satellites of Uranus and Saturn: Depth/diameter and central peak occurrence, J. Geophys. Res., 94, pp. 3813–3832.ADSCrossRefGoogle Scholar
  70. Schenk, P.M. (1991a) Fluid volcanism on Miranda and Ariel: Flow morphology and composition, J. Geophys. Res., 96, pp. 1887–1906.ADSCrossRefGoogle Scholar
  71. Schenk, P.M. (1991b) Ganymede and Callisto: Complex crater formation and planetary crusts, J. Geophys. Res., 96, pp. 15,635–15,664.ADSCrossRefGoogle Scholar
  72. Schenk, P.M. (1992) Volcanism on Triton, Lunar Planet. Sci. XXIII, pp. 1215–1216.ADSGoogle Scholar
  73. Schenk, P.M. (1993) Central pit and dome craters: Exposing the interiors of Ganymede and Callisto, J. Geophys. Res., 98, pp. 7475–7498.ADSCrossRefGoogle Scholar
  74. Schenk, P.M. (1995) The geology of Callisto, J. Geophys. Res., 100, pp. 19,023–19,040.ADSCrossRefGoogle Scholar
  75. Schenk, P.M. and Iaquinta-Ridolfi, F. (1995) Geology of large impact basins on Ganymede and Callisto, (abstract). Lunar Planet. sci., XXVI, pp. 1231–1232.Google Scholar
  76. Schenk, P.M. and Jackson, M.P.A. (1993) Diapirism on Triton: A record of crustal layering and instability, Geology, 21, pp. 299–302.ADSCrossRefGoogle Scholar
  77. Schenk, P.M. and McKinnon, W.B. (1985) Dark halo craters and the thickness of grooved terrain on Ganymede. Proc. Lunar Planet sci. Conf: 15th, Part 2, J. Geophys. Res., 90, suppl., pp. C775–C783.ADSCrossRefGoogle Scholar
  78. Schenk, P.M. and McKinnon, W.B. (1987) Ring geometry on Ganymede and Callisto. Icarus, 72, pp. 209–234.ADSCrossRefGoogle Scholar
  79. Schenk, P.M. and McKinnon, W.B. (1989) Fault offsets and lateral crustal movement on Europa: evidence for a mobile ice shell, Icarus, 79, pp. 75–100.ADSCrossRefGoogle Scholar
  80. Schenk, P.M., McKinnon, W.B. and Moore, J. (1997) Stereo topography of Valhalla and Gilgamesh, Lunar Planet. Sci. XXVIII, pp. 1249–1250.ADSGoogle Scholar
  81. Schenk, P.M. and Moore, J.M. (1995) Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry, J. Geophys. Res., 100 pp. 19,009–19,022.ADSCrossRefGoogle Scholar
  82. Schultz, P.H. and Gault, D.E. (1975) Seismic effects from major basin formations on the Moon and Mercury, Moon, 12, pp. 159–177.ADSCrossRefGoogle Scholar
  83. Sharp, R.G. (1973a) Mars: South Polar pits and etched terrain, J. Geophys. Res., 78, pp. 4073–4083.ADSCrossRefGoogle Scholar
  84. Sharp, R.G. (1973b) Mars: Troughed terrain, J. Geophys. Res., 78, pp. 4063–4072.ADSCrossRefGoogle Scholar
  85. Sharpe, C.F.S. (1939) Landslides and Related Phenomena, Cooper Square, New York, 137 pp.Google Scholar
  86. Shock, E.L. and McKinnon, W.B. (1993) Hydrothermal processing of cometary volatiles-Applications to Triton, Icarus, 106, pp. 464–477.ADSCrossRefGoogle Scholar
  87. Shoemaker, E.M. (1994) Update on the impact rates in the Jovian system, paper presented at Icy Galilean Satellites: An International Conference, San Juan Capistrano Inst., San Juan Capistrano. Calif, Feb. 1–3, 1994.Google Scholar
  88. Shoemaker, E.M. and Morris, E.C. (1970) Surveyor final reports. Geology: Physics of fragmental debris. Icarus, 12 pp. 188–212.ADSCrossRefGoogle Scholar
  89. Shoemaker, E.M. and Wolfe, R.F. (1982) Cratering time scales for the Galilean satellites. In: Satellites of Jupiter, edited by D. Morrison, Univ. of Ariz. Press, Tucson, pp. 277–339.Google Scholar
  90. Shoemaker, E.M., Lucchitta, B.K., Wilhelms, D.E., Plescia J.B. and Squyres, S.W. (1982) The geology of Ganymede. In: Satellites of Jupiter, edited by D. Morrison, Univ. of Ariz. Press, Tucson, pp. 435–520.Google Scholar
  91. Showman, A. and Stevenson, D.J. (1994) Primordial orbital resonance as an explanation for the Ganymede-Callisto dichotomy, paper presented at Icy Galilean Satellites Conf., San Juan Capistrano Institute, San Juan Capistrano, Calif.Google Scholar
  92. Smith, B.A. and the Voyager Imaging Team (1979a) The Jupiter system through the eyes of Voyager 1, Science, 204, pp. 951–972.ADSCrossRefGoogle Scholar
  93. Smith, B.A. and the Voyayer Imaging Team (1979b) The Galilean satellites and Jupiter: Imaging science results from Voyager 2, Science, 206, pp. 927–950.ADSCrossRefGoogle Scholar
  94. Smith, B.A. and the Voyager Imaging Team (1982) A new look at the Saturn system: The Voyager 2 images, Science, 215, pp. 504–537.ADSCrossRefGoogle Scholar
  95. Smith, B.A. and the Voyager Imaging Team (1986) Voyager 2 in the Uranian system: Imaging science results, Science, 233, pp. 43–64.ADSCrossRefGoogle Scholar
  96. Smith, B.A. and the Voyager Imaging Team (1989) Voyager 2 at Neptune: Imaging science results, Science, 246, pp. 1422–1449.ADSCrossRefGoogle Scholar
  97. Soderblom, L.A. (1970) A model for small-impact erosion applied to the lunar surface, J. Geophys. Res., 75, pp. 2655–2661.ADSCrossRefGoogle Scholar
  98. Spudis, P.D., Reisse, R.A. and Gillis, J.J. (1994) Ancient multiring basins on the Moon revealed by Clementine Laser Altimetry, Science, 266, pp. 1848–1851.ADSCrossRefGoogle Scholar
  99. Squyres, S.W. (1980) Topographic domes on Ganymede: Ice vulcanism or isostatic up-warping, Icarus, 44, pp. 472–480.ADSCrossRefGoogle Scholar
  100. Squyres, S.W. and Croft, S. (1986) The tectonics of icy satellites. In: Satellites, edited by J. Burns and M. Mattews, Univ. of Ariz. Press, Tucson, pp. 293–341.Google Scholar
  101. Squyres, S.W., Reynolds, R.T., Cassen, P.M. and Peale, S.J. (1983) Liquid water and active resurfacing on Europa, Nature, 301, pp. 225–226.ADSCrossRefGoogle Scholar
  102. Squyres, S.W., Reynolds, R.T. and Summers, A.L. (1988) Accretional heating of the satellites of Saturn and Uranus, J. Geophys. Res., 93, pp. 8779–8794.ADSCrossRefGoogle Scholar
  103. Stevenson, D.J. (1982) Volcanism and igneous processes in small icy satellites, Nature, 298, pp. 142–144.ADSCrossRefGoogle Scholar
  104. Stevenson, D.J. and Lunine, J.I. (1986) Mobilization of cryogenic ices in outer solar system satellites, Nature, 323, pp. 46–48.ADSCrossRefGoogle Scholar
  105. Stuart-Alexander, D.E. (1978) Geologic map of the Central Far Side of the Moon, U. S. Geol. Surv. Misc. Inv. Map 1 p. 1047.Google Scholar
  106. Thomas, P. and Schubert, G. (1988) Power-law rheology of ice and the retention of craters on Ganymede, J. Geophys. Res., 93, pp. 13,755–13,762.ADSCrossRefGoogle Scholar
  107. Thomas, P.J. and Squyres, S.W. (1990) Formation of crater palimpsests on Ganymede, J. Geophys. Res., 95, pp. 19,161–19,174.ADSCrossRefGoogle Scholar
  108. Tittemore, W.C. and Wisdom, J. (1990) Tidal evolution of the Uranian satellites. III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities, Icarus, 85, pp. 394–443.Google Scholar
  109. Trask, N.J. and Dzurisin, D. (1984) Geologic map of the Discovery Quadrangle of Mercury, U. S. Geol. Surv. Misc. Inv. Map, 1, p. 1658.Google Scholar
  110. Varnes, D.J. (1958) Landslide types and processes, In: Landslides and Engineering Practice, edited by E.B. Eckel. National Academy of Sciences. National Research Council Highway Research Board. Washington. D.C., pp. 20–47.Google Scholar
  111. Varnes, D.J. (1978) Slope movement types and processes. In: Landslides. Analysis, and Control, edited by R.L. Shuster and R.J. Kriszek. National Acadamy of Sciences, National Research Council Highway Research Board. Washington, D.C., pp. 11–33.Google Scholar
  112. Verbiscer, A.J. and Veverka, J. (1989) Albedo dichotomy of Rhea: Hapke analysis of Voyager photometry, Icarus, 82, pp. 336–353.ADSCrossRefGoogle Scholar
  113. Watts, A.W., Greeley, R. and Melosh, H.J. (1988) The formation of antipodal terrains on icy satellites (abs.). Bull. Amer. Astron. Soc., 20, p. 872.ADSGoogle Scholar
  114. Wilshire, H.G., Offield, T.W., Howard, K.A. and Cummings, D. (1972) Geology of the Sierra Madera cryptoexplosion structure, Pecos County, Texas, U.S. Geol. Surv. Prof. Paper, 599-H, 42 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Paul M. Schenk
    • 1
  • Jeffrey M. Moore
    • 2
  1. 1.Lunar and Planetary InstituteHoustonUSA
  2. 2.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations