Skip to main content

Geodynamics of Icy Satellites

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Geodynamics concerns the internal structure, differentiation and convection, and tectonics of worlds. With respect to icy satellites there exists an excellent literature (e.g., Burns, 1986), and for the Earth a formidable body of new research results. In this review, I update some of the perspectives on how the icy satellites operate geodynamically, addressing the interplay between rheology, petrology, convection, and tectonics, and focusing on convection as a predominant endogenic process. Icy satellites, if they do undergo internal convection, are generally in the stagnant lid regime as defined by Solomatov, because the viscosity of water ice is strongly temperature-dependent. The Rayleigh number, a measure of the vigor of convection, for the actively convecting interior of an icy satellite is a very strong function of satellite radius (going at least as the sixth power). Convection was probable (if not vigorous) in all but the smallest middle-sized icy satellites early in solar system history. Today, vigorous convection only occurs in Ganymede, Callisto, and Titan, with weak convection occurring in Triton and Pluto. The pronounced polymorphism of the predominant ice, water ice, is expected to strongly modulate convective flow. The ice I-to-II transition should augment convective vigor, while both the ice I-to-III and II-to-V transitions should, by themselves, inhibit convective penetration. Convection within the larger icy satellites should be or have been layered. The negative activation volume for ice I ensures that convective flow in ice I is strongly coupled to the overlying icy lithosphere, which may in some circumstances generate sufficient stress in the lithosphere to induce brittle failure and surface tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G. and Moore, W.B. (1997) Gravitational evidence for an undifferentiated Callisto, Nature, 387, pp. 264–266.

    Article  ADS  Google Scholar 

  • Bercovici, D., Schubert, G. and Reynolds, R.T. (1986) Phase transitions and convection in icy satellites, Geophys. Res. Lett., 13, pp. 448–451.

    Article  ADS  Google Scholar 

  • Booker, J.R. (1976) Thermal convection with strongly temperature-dependent viscosity, J. Fluid Mech., 76, pp. 741–754.

    Article  ADS  Google Scholar 

  • Burns, J.A. and Matthews, M.S., eds. (1986) Satellites, University of Arizona Press, Tucson.

    Google Scholar 

  • Brown, R.H., Cruikshank, D.P., Veverka, J., Helfenstein, P. and Eluszkiewicz, J. (1995) Surface composition and photometric properties of Triton. In: D.P. Cruikshank (ed.), Neptune and Triton, University of Arizona Press, Tucson, pp. 991–1030.

    Google Scholar 

  • Christensen, U. (1984) Convection with pressure-and temperature-dependent non-Newtonian rheology, Geophys. J. R. astr. Soc, 77, pp. 343–384.

    Article  ADS  Google Scholar 

  • Christensen, U.R. (1985) Thermal evolution models for the Earth, J. Geophys. Res., 90, pp. 2995–3007.

    Article  ADS  Google Scholar 

  • Christensen, U.R. and Yuen, D.A. (1984) The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res., 89, pp. 4389–4402.

    Article  ADS  Google Scholar 

  • Christensen, U.R. and Yuen, D.A. (1985) Layered convection induced by phase transitions, J. Geophys. Res., 90, pp. 10,291–10,300.

    Article  ADS  Google Scholar 

  • Cynn, H.C., Boone, S., Koumvakalis, A., Nicol, M. and Stevenson, D.J. (1989) Phase diagram for ammonia-water mixtures at high pressures: Implications for icy satellites. In: Proc. 19th Lunar Planet. sci. Con., Lunar and Planetary Institute, Houston, pp. 433–441.

    Google Scholar 

  • Davalle, A. and Jaupart, C. (1993) Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech., 253, pp. 141–166.

    Article  ADS  Google Scholar 

  • Davaille, A. and Jaupart, C. (1994) Onset of convection in fluids with temperature-dependent viscosity: Applications to the oceanic mantle, J. Geophys. Res., 99, pp. 19,853–19,866.

    Article  ADS  Google Scholar 

  • Davies, M.E., Abalakin, V.K., Brahic, A., Bursa, M., Chovitz, B.H., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T. and Tjuflin, Y.S. (1992) Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1991, Celest. Mech. Dynam. Astron., 53, pp. 377–397.

    Article  ADS  Google Scholar 

  • Eisenberg, D. and Kauzmann, W. (1969) The Structure and Properties of Water, Oxford University Press, New York.

    Google Scholar 

  • Ellsworth, K. and Schubert, G. (1983) Saturn’s icy satellites: Thermal and structural models, Icarus, 54, pp. 490–510.

    Article  ADS  Google Scholar 

  • Federico, C. and Lanciano, P. (1983) Thermal and structural evolution of four satellites of Saturn, Ann. Geophys., 1, pp. 469–476.

    ADS  Google Scholar 

  • Fegley, B., Jr. (1993) Chemistry of the solar nebula. In: M. Greenberg and V. Pironello (eds.), The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht, pp. 75–147.

    Chapter  Google Scholar 

  • Fegley, B., Jr. and Prinn, R.G. (1989) Solar nebula chemistry: Implications for volatiles in the solar system. In: H.A. Weaver and L. Danly (eds.), The Formation and Evolution of Planetary Systems, Cambridge University Press, Cambridge, pp. 171–211.

    Google Scholar 

  • Forni, O., Coradini, A. and Federico, C. (1991) Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus, 94, pp. 232–245.

    Article  ADS  Google Scholar 

  • Forni, O., Federico, C. and Coradini, A. (1992) Compressible convection with phase transitions in Ganymede and Callisto, Bull. Am. Astron. Soc, 28, p. 944.

    ADS  Google Scholar 

  • Fowler, A.C. (1985) Fast thermoviscous convection, Stud. Appl. Math., 72, pp. 189–219.

    MathSciNet  MATH  Google Scholar 

  • Friedson, A.J. and Stevenson, D.J. (1983) Viscosity of ice-rock mixtures and applications to the evolution of the icy satellites, Icarus, 56, pp. 1–14.

    Article  ADS  Google Scholar 

  • Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford.

    Google Scholar 

  • Goldsby, D.L. and Kohlstedt, D.L. (1997) Grain boundary sliding in fine-grained ice I, Scripta Metall. Mat., in press.

    Google Scholar 

  • Golombek, M.P. and Banerdt, W.B. (1986) Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features, Icarus, 68, pp. 252–265.

    Article  ADS  Google Scholar 

  • Grasset, O. and Sotin, C. (1996) The cooling rate of a liquid shell in Titan’s interior, Icarus, 123, pp. 101–112.

    Article  ADS  Google Scholar 

  • Hobbs, P.V. (1974) Ice Physics, Oxford University Press, London.

    Google Scholar 

  • Hunten, D.M., Tomasko, M.G., Flasar, F.M., Samuelson, R.E., Strobel, D.F. and Stevenson, D.J. (1984) Titan. In: T. Gehrels and M.S. Matthews (eds.), Saturn, University of Arizona Press, Tucson, pp. 671–759.

    Google Scholar 

  • Kirby, S.H., Durham, W.B., and Heard, H.C. (1985) Rheologies of H2O ices Ih, II, and III at high pressures: A progress report. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 89–107.

    Chapter  Google Scholar 

  • Kirk, R.L. and Stevenson, D.J. (1987) Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 69, pp. 91–134.

    Article  ADS  Google Scholar 

  • Lennie, T.B., McKenzie, D.P., Moore, D.R. and Weiss, N.O. (1988) The breakdown of steady convection, J. Fluid. Mech., 188, pp. 47–85.

    Article  MathSciNet  ADS  Google Scholar 

  • Lunine, J.I. and Stevenson, D.J. (1987) Clathrates and ammonia hydrates at high pressure: Application to the origin of methane on Titan, Icarus, 70, pp. 61–77.

    Article  ADS  Google Scholar 

  • Lupo, M.J. and Lewis, J.S. (1979) Mass-radius relationships in icy satellites, Icarus, 40, pp. 157–170.

    Article  ADS  Google Scholar 

  • McKinnon, W.B. (1981) Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede, Proc. Lunar Planet. sci., 12B, pp. 1585–1597.

    ADS  Google Scholar 

  • McKinnon, W.B. (1985) Geology of icy satellites. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 826–856.

    Google Scholar 

  • McKinnon, W.B. and Parmentier, E.M. (1986) Ganymede and Callisto. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, pp. 718–763.

    Google Scholar 

  • McKinnon, W.B., Simonelli, D.P. and Schubert, G. (1997) Composition, internal structure, and thermal evolution of Pluto and Charon. In: S.A. Stern, D.J. Tholen and A.S. Ruskin (eds.), Pluto and Charon, University of Arizona Press, Tucson, pp. 291–339.

    Google Scholar 

  • Melosh, H.J. (1977) Shear stress on the base of a lithospheric plate, Pure Appl. Geophys., 115, pp. 429–439.

    Article  ADS  Google Scholar 

  • Moresi, L.-N. and Solomatov, V.S. (1995) Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluids, 7, pp. 2154–2162.

    Article  ADS  MATH  Google Scholar 

  • Morris, S. and Canright, D. (1984) A boundary-layer analysis of Bernard convection in a fluid of strongly temperature-dependent viscosity, Phys. Earth Planet. Int., 36, pp. 355–373.

    Article  ADS  Google Scholar 

  • Mueller, S. and McKinnon, W.B. (1988) Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution, Icarus, 76, pp. 437–464.

    Article  ADS  Google Scholar 

  • Mumma, M.J., Weissman, P.R. and Stern, S.A. (1993) Comets and the origin of the Solar System: Reading the Rosetta stone. In: E.H. Levy and J.I. Lunine (eds.), Protostars and Planets III, University of Arizona Press, Tucson, pp. 1177–1252.

    Google Scholar 

  • Ogawa, M., Schubert, G. and Zebib, A. (1991) Numerical simulations of three dimensional thermal convection of a strongly temperature-dependent viscosity fluid, J. Fluid. Mech., 233, pp. 299–328.

    Article  ADS  MATH  Google Scholar 

  • Phillips, R.J. (1986) A mechanism for tectonic deformation on Venus, Geophys. Res. Lett., 13, pp. 1141–1144.

    Article  ADS  Google Scholar 

  • Reynolds, R.T. and Cassen, P.M. (1979) On the internal structure of the major satellites of the outer planets, Geophys. Res. Lett., 6, pp. 121–124.

    Article  ADS  Google Scholar 

  • Richter, F.M. (1978) Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature, J. Fluid Mech., 89, pp. 553–560.

    Article  ADS  Google Scholar 

  • Richter, F.M., Nataf, H.-C. and Daly, S.F. (1983) Heat transfer and horizontally-averaged temperature of convection with large viscosity variations, J. Fluid. Mech., 129, pp. 173–192.

    Article  ADS  Google Scholar 

  • Schubert, G., Spohn, T. and Reynolds, R.T. (1986) Thermal histories, compositions, and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, pp. 224–292.

    Google Scholar 

  • Shock, E.L. and McKinnon, W.B. (1993) Hydrothermal processing of cometary volatiles — Applications to Triton, Icarus, 106, pp. 464–477.

    Article  ADS  Google Scholar 

  • Solomatov, V.S. (1995) Scaling of temperature-and stress-dependent viscosity convection, Phys. Fluids, 7, pp. 266–274.

    Article  ADS  MATH  Google Scholar 

  • Solomatov, V.S. and Moresi, L.-N. (1997) Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets, Geophys. Res. Lett, 24, pp. 1907–1910.

    Article  ADS  Google Scholar 

  • Sotin, C. and Parmentier, E.M. (1989) On the stability of a fluid layer containing a univariant phase transition: Application to planetary interiors, Phys. Earth Planet. Int., 55, pp. 10–25.

    Article  ADS  Google Scholar 

  • Stengel, K.C., Oliver, D.S. and Booker, J.R. (1982) Onset of convection in a variable-viscosity fluid, J. Fluid Mech., 120, pp. 411–431.

    Article  ADS  MATH  Google Scholar 

  • Stevenson, D.J., Spohn, T. and Schubert, G. (1983) Magnetism and thermal evolution of the terrestrial planets, Icarus, 54, pp. 466–489.

    Article  ADS  Google Scholar 

  • Tackley, P.J. (1995) Mantle dynamics: Influence of the transition zone, Rev. Geophys., suppl., 33, pp. 275–282.

    Article  ADS  Google Scholar 

  • Thompson, A.B. (1992) Water in the Earth’s upper mantle, Nature, 358, pp. 295–302.

    Article  ADS  Google Scholar 

  • Thurber, C.H., Hsui, A.T. and Toksoz, M.N. (1980) Thermal evolution of Ganymede and Callisto: Effects of solid-state convection and constraints from Voyager imagery, Proc. Lunar Planet. sci. Conf. 11th, pp. 1957–1977.

    Google Scholar 

  • Turcotte, D.L. and Schubert, G. (1982) Geodynamics, John Wiley & Sons, New York.

    Google Scholar 

  • Whalley, E. (1985) The physics of ice: Some fundamentals of planetary glaciology. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 9–37.

    Chapter  Google Scholar 

  • Yuen, D.A., Hansen, U., Zhao, W., Vincent, A.P. and Malevsky, A.V. (1993) Hard turbulent convection and thermal evolution of the mantle, J. Geophys. Res., 98, pp. 5355–5373.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McKinnon, W.B. (1998). Geodynamics of Icy Satellites. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics