Advertisement

Geodynamics of Icy Satellites

  • William B. McKinnon
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Geodynamics concerns the internal structure, differentiation and convection, and tectonics of worlds. With respect to icy satellites there exists an excellent literature (e.g., Burns, 1986), and for the Earth a formidable body of new research results. In this review, I update some of the perspectives on how the icy satellites operate geodynamically, addressing the interplay between rheology, petrology, convection, and tectonics, and focusing on convection as a predominant endogenic process. Icy satellites, if they do undergo internal convection, are generally in the stagnant lid regime as defined by Solomatov, because the viscosity of water ice is strongly temperature-dependent. The Rayleigh number, a measure of the vigor of convection, for the actively convecting interior of an icy satellite is a very strong function of satellite radius (going at least as the sixth power). Convection was probable (if not vigorous) in all but the smallest middle-sized icy satellites early in solar system history. Today, vigorous convection only occurs in Ganymede, Callisto, and Titan, with weak convection occurring in Triton and Pluto. The pronounced polymorphism of the predominant ice, water ice, is expected to strongly modulate convective flow. The ice I-to-II transition should augment convective vigor, while both the ice I-to-III and II-to-V transitions should, by themselves, inhibit convective penetration. Convection within the larger icy satellites should be or have been layered. The negative activation volume for ice I ensures that convective flow in ice I is strongly coupled to the overlying icy lithosphere, which may in some circumstances generate sufficient stress in the lithosphere to induce brittle failure and surface tectonics.

Keywords

Rayleigh Number Solar Nebula Viscosity Contrast Clapeyron Slope Elastic Lithosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G. and Moore, W.B. (1997) Gravitational evidence for an undifferentiated Callisto, Nature, 387, pp. 264–266.ADSCrossRefGoogle Scholar
  2. Bercovici, D., Schubert, G. and Reynolds, R.T. (1986) Phase transitions and convection in icy satellites, Geophys. Res. Lett., 13, pp. 448–451.ADSCrossRefGoogle Scholar
  3. Booker, J.R. (1976) Thermal convection with strongly temperature-dependent viscosity, J. Fluid Mech., 76, pp. 741–754.ADSCrossRefGoogle Scholar
  4. Burns, J.A. and Matthews, M.S., eds. (1986) Satellites, University of Arizona Press, Tucson.Google Scholar
  5. Brown, R.H., Cruikshank, D.P., Veverka, J., Helfenstein, P. and Eluszkiewicz, J. (1995) Surface composition and photometric properties of Triton. In: D.P. Cruikshank (ed.), Neptune and Triton, University of Arizona Press, Tucson, pp. 991–1030.Google Scholar
  6. Christensen, U. (1984) Convection with pressure-and temperature-dependent non-Newtonian rheology, Geophys. J. R. astr. Soc, 77, pp. 343–384.ADSCrossRefGoogle Scholar
  7. Christensen, U.R. (1985) Thermal evolution models for the Earth, J. Geophys. Res., 90, pp. 2995–3007.ADSCrossRefGoogle Scholar
  8. Christensen, U.R. and Yuen, D.A. (1984) The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res., 89, pp. 4389–4402.ADSCrossRefGoogle Scholar
  9. Christensen, U.R. and Yuen, D.A. (1985) Layered convection induced by phase transitions, J. Geophys. Res., 90, pp. 10,291–10,300.ADSCrossRefGoogle Scholar
  10. Cynn, H.C., Boone, S., Koumvakalis, A., Nicol, M. and Stevenson, D.J. (1989) Phase diagram for ammonia-water mixtures at high pressures: Implications for icy satellites. In: Proc. 19th Lunar Planet. sci. Con., Lunar and Planetary Institute, Houston, pp. 433–441.Google Scholar
  11. Davalle, A. and Jaupart, C. (1993) Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech., 253, pp. 141–166.ADSCrossRefGoogle Scholar
  12. Davaille, A. and Jaupart, C. (1994) Onset of convection in fluids with temperature-dependent viscosity: Applications to the oceanic mantle, J. Geophys. Res., 99, pp. 19,853–19,866.ADSCrossRefGoogle Scholar
  13. Davies, M.E., Abalakin, V.K., Brahic, A., Bursa, M., Chovitz, B.H., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T. and Tjuflin, Y.S. (1992) Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1991, Celest. Mech. Dynam. Astron., 53, pp. 377–397.ADSCrossRefGoogle Scholar
  14. Eisenberg, D. and Kauzmann, W. (1969) The Structure and Properties of Water, Oxford University Press, New York.Google Scholar
  15. Ellsworth, K. and Schubert, G. (1983) Saturn’s icy satellites: Thermal and structural models, Icarus, 54, pp. 490–510.ADSCrossRefGoogle Scholar
  16. Federico, C. and Lanciano, P. (1983) Thermal and structural evolution of four satellites of Saturn, Ann. Geophys., 1, pp. 469–476.ADSGoogle Scholar
  17. Fegley, B., Jr. (1993) Chemistry of the solar nebula. In: M. Greenberg and V. Pironello (eds.), The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht, pp. 75–147.CrossRefGoogle Scholar
  18. Fegley, B., Jr. and Prinn, R.G. (1989) Solar nebula chemistry: Implications for volatiles in the solar system. In: H.A. Weaver and L. Danly (eds.), The Formation and Evolution of Planetary Systems, Cambridge University Press, Cambridge, pp. 171–211.Google Scholar
  19. Forni, O., Coradini, A. and Federico, C. (1991) Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus, 94, pp. 232–245.ADSCrossRefGoogle Scholar
  20. Forni, O., Federico, C. and Coradini, A. (1992) Compressible convection with phase transitions in Ganymede and Callisto, Bull. Am. Astron. Soc, 28, p. 944.ADSGoogle Scholar
  21. Fowler, A.C. (1985) Fast thermoviscous convection, Stud. Appl. Math., 72, pp. 189–219.MathSciNetzbMATHGoogle Scholar
  22. Friedson, A.J. and Stevenson, D.J. (1983) Viscosity of ice-rock mixtures and applications to the evolution of the icy satellites, Icarus, 56, pp. 1–14.ADSCrossRefGoogle Scholar
  23. Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford.Google Scholar
  24. Goldsby, D.L. and Kohlstedt, D.L. (1997) Grain boundary sliding in fine-grained ice I, Scripta Metall. Mat., in press.Google Scholar
  25. Golombek, M.P. and Banerdt, W.B. (1986) Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features, Icarus, 68, pp. 252–265.ADSCrossRefGoogle Scholar
  26. Grasset, O. and Sotin, C. (1996) The cooling rate of a liquid shell in Titan’s interior, Icarus, 123, pp. 101–112.ADSCrossRefGoogle Scholar
  27. Hobbs, P.V. (1974) Ice Physics, Oxford University Press, London.Google Scholar
  28. Hunten, D.M., Tomasko, M.G., Flasar, F.M., Samuelson, R.E., Strobel, D.F. and Stevenson, D.J. (1984) Titan. In: T. Gehrels and M.S. Matthews (eds.), Saturn, University of Arizona Press, Tucson, pp. 671–759.Google Scholar
  29. Kirby, S.H., Durham, W.B., and Heard, H.C. (1985) Rheologies of H2O ices Ih, II, and III at high pressures: A progress report. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 89–107.CrossRefGoogle Scholar
  30. Kirk, R.L. and Stevenson, D.J. (1987) Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 69, pp. 91–134.ADSCrossRefGoogle Scholar
  31. Lennie, T.B., McKenzie, D.P., Moore, D.R. and Weiss, N.O. (1988) The breakdown of steady convection, J. Fluid. Mech., 188, pp. 47–85.MathSciNetADSCrossRefGoogle Scholar
  32. Lunine, J.I. and Stevenson, D.J. (1987) Clathrates and ammonia hydrates at high pressure: Application to the origin of methane on Titan, Icarus, 70, pp. 61–77.ADSCrossRefGoogle Scholar
  33. Lupo, M.J. and Lewis, J.S. (1979) Mass-radius relationships in icy satellites, Icarus, 40, pp. 157–170.ADSCrossRefGoogle Scholar
  34. McKinnon, W.B. (1981) Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede, Proc. Lunar Planet. sci., 12B, pp. 1585–1597.ADSGoogle Scholar
  35. McKinnon, W.B. (1985) Geology of icy satellites. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 826–856.Google Scholar
  36. McKinnon, W.B. and Parmentier, E.M. (1986) Ganymede and Callisto. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, pp. 718–763.Google Scholar
  37. McKinnon, W.B., Simonelli, D.P. and Schubert, G. (1997) Composition, internal structure, and thermal evolution of Pluto and Charon. In: S.A. Stern, D.J. Tholen and A.S. Ruskin (eds.), Pluto and Charon, University of Arizona Press, Tucson, pp. 291–339.Google Scholar
  38. Melosh, H.J. (1977) Shear stress on the base of a lithospheric plate, Pure Appl. Geophys., 115, pp. 429–439.ADSCrossRefGoogle Scholar
  39. Moresi, L.-N. and Solomatov, V.S. (1995) Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluids, 7, pp. 2154–2162.ADSzbMATHCrossRefGoogle Scholar
  40. Morris, S. and Canright, D. (1984) A boundary-layer analysis of Bernard convection in a fluid of strongly temperature-dependent viscosity, Phys. Earth Planet. Int., 36, pp. 355–373.ADSCrossRefGoogle Scholar
  41. Mueller, S. and McKinnon, W.B. (1988) Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution, Icarus, 76, pp. 437–464.ADSCrossRefGoogle Scholar
  42. Mumma, M.J., Weissman, P.R. and Stern, S.A. (1993) Comets and the origin of the Solar System: Reading the Rosetta stone. In: E.H. Levy and J.I. Lunine (eds.), Protostars and Planets III, University of Arizona Press, Tucson, pp. 1177–1252.Google Scholar
  43. Ogawa, M., Schubert, G. and Zebib, A. (1991) Numerical simulations of three dimensional thermal convection of a strongly temperature-dependent viscosity fluid, J. Fluid. Mech., 233, pp. 299–328.ADSzbMATHCrossRefGoogle Scholar
  44. Phillips, R.J. (1986) A mechanism for tectonic deformation on Venus, Geophys. Res. Lett., 13, pp. 1141–1144.ADSCrossRefGoogle Scholar
  45. Reynolds, R.T. and Cassen, P.M. (1979) On the internal structure of the major satellites of the outer planets, Geophys. Res. Lett., 6, pp. 121–124.ADSCrossRefGoogle Scholar
  46. Richter, F.M. (1978) Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature, J. Fluid Mech., 89, pp. 553–560.ADSCrossRefGoogle Scholar
  47. Richter, F.M., Nataf, H.-C. and Daly, S.F. (1983) Heat transfer and horizontally-averaged temperature of convection with large viscosity variations, J. Fluid. Mech., 129, pp. 173–192.ADSCrossRefGoogle Scholar
  48. Schubert, G., Spohn, T. and Reynolds, R.T. (1986) Thermal histories, compositions, and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, pp. 224–292.Google Scholar
  49. Shock, E.L. and McKinnon, W.B. (1993) Hydrothermal processing of cometary volatiles — Applications to Triton, Icarus, 106, pp. 464–477.ADSCrossRefGoogle Scholar
  50. Solomatov, V.S. (1995) Scaling of temperature-and stress-dependent viscosity convection, Phys. Fluids, 7, pp. 266–274.ADSzbMATHCrossRefGoogle Scholar
  51. Solomatov, V.S. and Moresi, L.-N. (1997) Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets, Geophys. Res. Lett, 24, pp. 1907–1910.ADSCrossRefGoogle Scholar
  52. Sotin, C. and Parmentier, E.M. (1989) On the stability of a fluid layer containing a univariant phase transition: Application to planetary interiors, Phys. Earth Planet. Int., 55, pp. 10–25.ADSCrossRefGoogle Scholar
  53. Stengel, K.C., Oliver, D.S. and Booker, J.R. (1982) Onset of convection in a variable-viscosity fluid, J. Fluid Mech., 120, pp. 411–431.ADSzbMATHCrossRefGoogle Scholar
  54. Stevenson, D.J., Spohn, T. and Schubert, G. (1983) Magnetism and thermal evolution of the terrestrial planets, Icarus, 54, pp. 466–489.ADSCrossRefGoogle Scholar
  55. Tackley, P.J. (1995) Mantle dynamics: Influence of the transition zone, Rev. Geophys., suppl., 33, pp. 275–282.ADSCrossRefGoogle Scholar
  56. Thompson, A.B. (1992) Water in the Earth’s upper mantle, Nature, 358, pp. 295–302.ADSCrossRefGoogle Scholar
  57. Thurber, C.H., Hsui, A.T. and Toksoz, M.N. (1980) Thermal evolution of Ganymede and Callisto: Effects of solid-state convection and constraints from Voyager imagery, Proc. Lunar Planet. sci. Conf. 11th, pp. 1957–1977.Google Scholar
  58. Turcotte, D.L. and Schubert, G. (1982) Geodynamics, John Wiley & Sons, New York.Google Scholar
  59. Whalley, E. (1985) The physics of ice: Some fundamentals of planetary glaciology. In: J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Proc. NATO Workshop Ices in the Solar System, D. Reidel, Dordrecht, pp. 9–37.CrossRefGoogle Scholar
  60. Yuen, D.A., Hansen, U., Zhao, W., Vincent, A.P. and Malevsky, A.V. (1993) Hard turbulent convection and thermal evolution of the mantle, J. Geophys. Res., 98, pp. 5355–5373.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • William B. McKinnon
    • 1
    • 2
  1. 1.Department of Earth and Planetary SciencesUSA
  2. 2.McDonnell Center for the Space SciencesWashington UniversitySaint LouisUSA

Personalised recommendations