Mars CO2 Ice Polar Caps

  • François Forget
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)


The Martian Polar caps have been observed for more than two centuries by terrestrial observers. Following the first observations by J. Cassini and C. Huygens, Herschel (1784) first described their seasonal characteristics. From Earth, they appear like white bright features waxing and waning over a Mars year. Because of the 25.1° inclination of Mars’equator to its orbit plane, the seasons on Mars are much like their terrestrial counterparts. By analogy with the Earth, most observers assumed that the Martian polar caps were composed of water frost, until the first space probes to Mars. Following the Mariner 4 mission in 1965, Leighton and Murray (1966) used a simple thermal model to reveal the processes which control the Martian seasonal polar caps: during the fall and winter seasons at high latitudes, the local surface and atmospheric temperatures become cold enough to reach the frost point of CO2, the major constituent of the thin Martian atmosphere. CO2 condenses and forms CO2 ice deposits on the surface. During the spring and summer seasons in a given hemisphere, the seasonal CO2 cap sublimates back into the atmosphere. Spectroscopic observations later confirmed the CO2 composition (Herr and Pimentel, 1969; Larson and Fink, 1972).


Dust Storm Polar Night Sublimation Rate Martian Climate Global Dust Storm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Air Liquide (1976) Encyclopédie des gaz. Elsevier publication.Google Scholar
  2. Bell, J.F. and Crisp, D. (1993) Groundbased imaging spectroscopy of Mars in the near infrared: preliminary results, Icarus, 104, pp. 2–19ADSCrossRefGoogle Scholar
  3. Briggs, G.A. and Leovy, C.B. (1974) Mariner 9 observations of the Mars north polar hood, Bull. Am. Meteorol. Soc, 55, pp. 278–296CrossRefGoogle Scholar
  4. Briggs, G., Klaasen, K., Thorpe, T. and Wellman, J. (1977) Martian dynamical phenomenon during June–November 1976: Viking orbiter imaging results, J. Geo-phys. Res., 82, pp. 4121–4149ADSCrossRefGoogle Scholar
  5. Briggs, G.A. (1974) The nature of the residual Martian polar caps, Icarus, 23, pp. 167–191ADSCrossRefGoogle Scholar
  6. Butler, B., Muhleman, D. and Slade, M. (1995) The difference in the residual ice caps on Mars as deduced from VLA/Goldstone radar images, Abstract for the “Solar System Ices” international symposium, Toulouse, France.Google Scholar
  7. Calvin, W.M. and Martin, T.Z. (1994) Spatial variability in the seasonal south polar cap of Mars, J. Geophys. Res., 99, pp. 21,143–21,152ADSCrossRefGoogle Scholar
  8. Calvin, W.M. (1990) Additions and corrections to the absorption coefficient of CO2 ice: applications to the Martian south polar cap, J. Geophys. Res., 95, pp. 14, 743–14, 750.CrossRefGoogle Scholar
  9. Capen, C.F. and Capen, V.W. (1970) Martian north polar cap (1962-1968, Icarus, 13, pp. 100–108ADSCrossRefGoogle Scholar
  10. Christensen, P.R. and Zurek, R.W. (1984) Martian north polar hazes and surface ice: Results from the Viking survey/completion mission, J. Geophys. Res., 89, pp. 4587–4596ADSCrossRefGoogle Scholar
  11. Clark, R.N. and McCord, T.B. (1982) Mars residual polar cap: Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals, J. Geophys. Res., 87, pp. 367–370ADSCrossRefGoogle Scholar
  12. Colburn, D.S., Pollack, J.B. and Haberle, R.M. (1989) Diurnal variations in optical depth at Mars, Icarus, 79, pp. 159–189ADSCrossRefGoogle Scholar
  13. Davies, D.W., Farmer, C.B. and LaPorte, D.D. (1979) Behavior of volatile in Mars’ polar areas: a model incorporating new experimental data., J. Geophys. Res., 82, pp. 3815–3822ADSCrossRefGoogle Scholar
  14. Davies, D.W. (1979) Effect of dust on the heating of mars’s surface and atmosphere, J. Geophys. Res., 84, pp. 8289–8293ADSCrossRefGoogle Scholar
  15. Ditteon, R. and Kieffer, H.H. (1979) Optical properties of solid CO2: Application to Mars, J. Geophys. Res., 84, pp. 8294–8300ADSCrossRefGoogle Scholar
  16. Dollfus, A. (1965) Etude de la planè te Mars de 1954 à 1958, Ann. Astrophys, 28, pp. 722–747ADSGoogle Scholar
  17. Eluszkiewicz, J. (1993) On the microphysical state of the Martian seasonal caps, Icarus, 103, pp. 43–48ADSCrossRefGoogle Scholar
  18. Fanale, F.P., Salvail, J., Banerdt, W.B. and Saunders, R.S. (1982) Mars: the regolith-atmosphere-cap system and climate change, Icarus, 50, pp. 381–407.ADSCrossRefGoogle Scholar
  19. Forget, F. and Pollack, J. (1996) Thermal infrared observations of the condensing Martian polar caps: CO2 ice temperatures and radiative budget., J. Geophys. Res., 101, pp. 16,865–16,880ADSCrossRefGoogle Scholar
  20. Forget, F., Pollack, J.B. and Hansen, G.B. (1995) Low brightness temperatures of Martian polar caps: CO2 clouds or low spectral emissivity?, J. Geophys. Res., 100, pp. 21,119–21,234CrossRefGoogle Scholar
  21. Gierasch, P.J. and Goody, R.M. (1968) A study of the thermal and dynamical structure of the Martian lower atmosphere, Planet. Space sci., 16, pp. 615–646ADSCrossRefGoogle Scholar
  22. Haberle, R.M. (1995) Buried dry ice on mars, Nature, 374, pp. 595–596ADSCrossRefGoogle Scholar
  23. Hansen, G.B. (1992) The spectral absorption of CO2 ice from 0.18 to 4.8 microns, Bull. Am. Astron. Soc, 24, pp. 978ADSGoogle Scholar
  24. Hansen, G.B. (1993) The spectral absorption of CO22 ice in the thermal infrared, Bull. Am. Astron. Soc, 25,(3), pp. 1034ADSGoogle Scholar
  25. Hart, H.M. and Jakosky, B.M. (1986) Composition and stability of the condensate observed at the Viking lander 2 site on Mars, Icarus, 66, pp. 134–142ADSCrossRefGoogle Scholar
  26. Herr, K.C. and Pimentel, G.C. (1969) Infrared absorptions near three microns recorded over the polar caps of Mars, Science, 166, pp. 496–499ADSCrossRefGoogle Scholar
  27. Herr, K.C. and Pimentel, G.C. (1970) Evidence for solid carbon dioxide in the upper atmosphere of Mars, Science, 166, pp. 496–499ADSCrossRefGoogle Scholar
  28. Herschel, W. (1784) On the remarkable appearance of the polar regions of the planet Mars, the inclination of its axis, the position of its poles, and its spheroidical figure; With a few hints relative to its diameter, Philos. Trans., 24, pp. 233–273Google Scholar
  29. Hess, S.L. (1979) Static stability and thermal wind in an atmosphere of variable composition: Application to Mars, J. Geophys. Res., 84, pp. 2969–2973MathSciNetADSCrossRefGoogle Scholar
  30. Hourdin, F., Le Van, P., Forget, F. and Talagrand, O. (1993) Meteorological variability and the annual surface pressure cycle on Mars, J. Atmos. sci., 50, pp. 3625–3640ADSCrossRefGoogle Scholar
  31. Hourdin, F., Forget, F. and Talagrand, O. (1995) The sensitivity of the Martian surface pressure to various parameters: a comparison between numerical simulations and Viking observations, J. Geophys. Res., 100, pp. 5501–5523ADSCrossRefGoogle Scholar
  32. Hunt, G.E. (1980) On the infrared radiative properties of CO2 ice clouds: Applications to Mars., Geophys. Res. Lett., 7, pp. 481–484ADSCrossRefGoogle Scholar
  33. Iwisaki, K., Saito, Y. and Akabane, T. (1982) Martian north polar cap: 1979-1980, J. Geophys. Res., 87, pp. 10265–10269ADSCrossRefGoogle Scholar
  34. Jakosky, B.M. and Barker, E.S. (1984) Comparison of ground-based and Viking Orbiter measurements of Martian water vapor: variability of the seasonal cycle, Icarus, 57, pp. 322–334ADSCrossRefGoogle Scholar
  35. Jakosky, B.M. and Haberle R.M. (1990) Year-to-year instability of the Mars south polar cap., J. Geophys. Res., 95, pp. 1359–1365ADSCrossRefGoogle Scholar
  36. Jakosky, B.M. and Martin, T.Z. (1987) Mars: North-polar atmospheric warming during dust storms, Icarus, 72, pp. 528–534ADSCrossRefGoogle Scholar
  37. Jakosky, B.M., Henderson, B.G. and Mellon, M.T. (1993) The Mars water cycle at other epochs: recent history of the polar caps and layered terrain., Icarus, 102, pp. 286–297ADSCrossRefGoogle Scholar
  38. Jakosky, B.M., Henderson, B.G. and Mellon, M.T. (1995) Chaotic obliquity and the nature of the Martian climate, J. Geophys. Res., 100, pp. 1579–1584ADSCrossRefGoogle Scholar
  39. Jakosky, B.M. (1983) Comments on “Mars residual north polar cap: Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals” by R. N. Clark and T. B. McCord., J. Geophys. Res., 88, pp. 4329–4330Google Scholar
  40. James, P.B. and North, G.R. (1982) The seasonal CO2 cycle on Mars: An application of an energy balance climate model, J. Geophys. Res., 87, pp. 10271–10283ADSCrossRefGoogle Scholar
  41. James, P.B., Briggs, G., Barnes, J. and Spruck, A. (1979) Seasonal recession of Mars’ south polar cap as seen by Viking, J. Geophys. Res., 84, (B6), pp. 2889–2922ADSCrossRefGoogle Scholar
  42. James, P.B., Pierce, M. and Martin, L.J. (1987) Martian north polar cap and circumpolar clouds: 1975-1980 Telescopic observation., Icarus, 71, pp. 306–312ADSCrossRefGoogle Scholar
  43. James, P.B., Kieffer, H.H. and Paige, D.A. (1992) The seasonal cycle of carbon dioxide on Mars, in Mars, pp. 934–968, University of Arizona Press, TucsonGoogle Scholar
  44. James, P.B., Clancy, R.T., Lee, S.W., Martin, L.J., Singer, R.B., S. E., Kahn, R.A. and Zurek, R.W. (1994) Monitoring Mars with the Hubble space telescope: 1990-1991 observations, Icarus, 109, pp. 79–101ADSCrossRefGoogle Scholar
  45. James, P.B. (1979) Recession of Martian north polar cap: 1977-1978 Viking observations, J. Geophys. Res.,84, pp. 8332–8334ADSCrossRefGoogle Scholar
  46. James, P.B. (1982) Recession of Martian north polar cap: 1979-1980 Viking observations, Icarus, 52, pp. 565–569ADSCrossRefGoogle Scholar
  47. James, P.B. (1983) Condensation phase of the Martian south polar cap, Bull. Am. Astron. Soc, 15, pp. 846–847ADSGoogle Scholar
  48. Jones, K., Arvidson, R.E., Guiness, E.A., Braggs, S.L., Wall, S.D., Carlston, C.E. and Pidek, D.G. (1979) One Mars year: Viking lander imaging observations, Science, 204, pp. 799–806ADSCrossRefGoogle Scholar
  49. Kieffer, H.H. and Zent, A.P. (1992) Quasi-periodic climate change on Mars, in Mars, edited by S. Kieffer, Jakosky and Matthews, pp. 1180–1218, University of Arizona Press, TucsonGoogle Scholar
  50. Kieffer, H.H., Chase, S.C., Miner, E.D., Palluconi, F.D., Münch, G., Neugebauer, G. and Martin, T.Z. (1976) Infrared thermal mapping of the martian surface and atmosphere: First results, Science, 193, pp. 780–786ADSCrossRefGoogle Scholar
  51. Kieffer, H.H., Martin, T.Z., Peterfreund, R., Jakosky, B.M., Miner, E.D. and Palluconi, F.D. (1977) Thermal and albedo mapping during the Viking primary mission, J. Geophys. Res., 82, pp. 4249–4291ADSCrossRefGoogle Scholar
  52. Kieffer, H.H. (1970a), Interpretation of the Martian polar cap spectra, J. Geophys. Res., 75, pp. 510–514ADSCrossRefGoogle Scholar
  53. Kieffer, H.H. (19706), Spectral reflectance of CO2-H2O frosts, J. Geophys. Res., 75, pp. 501–509ADSCrossRefGoogle Scholar
  54. Kieffer, H.H. (1979) Mars south polar spring and summer temperatures: a residual co2\ frost, J. Geophys. Res., 84, pp. 8263–8288ADSCrossRefGoogle Scholar
  55. Larson, H.P. and Fink, U. (1972) Identification of carbon dioxide frost on the Martian polar caps, Astrophys. Jour., 171, pp. L91–L95ADSCrossRefGoogle Scholar
  56. Laskar, J. and Robutel, P. (1993) The chaotic obliquity of the planets, Nature, 361, pp. 608–612ADSCrossRefGoogle Scholar
  57. Leighton, R.R. and Murray, B.C. (1966) Behavior of carbon dioxide and other volatiles on Mars, Science, 153, pp. 136–144ADSCrossRefGoogle Scholar
  58. Lindner, B.L. (1990) The Martian polar cap: radiative effects of ozone, clouds and airborne dust, J. Geophys. Res., 95, pp. 1367–1379ADSCrossRefGoogle Scholar
  59. Lindner, B.L. (1993) The hemispherical asymmetry in the Martian polar caps., J. Geophys. Res., 98, pp. 3339–3344ADSCrossRefGoogle Scholar
  60. Lumme, K. and James, P.B. (1984) Some photometric properties of the Martian south polar cap region during the 1971 apparition., Icarus, 58, pp. 363–376ADSCrossRefGoogle Scholar
  61. Lumme, K. (1976) On the surface brightness and geometric albedo of some Martian areas, Icarus, 29, pp. 69ADSCrossRefGoogle Scholar
  62. Martin, T.Z. and Kieffer, H.H. (1979) Thermal infrared properties of the Martian atmosphere, 2, the 15μm band measurements, J. Geophys. Res., 84, pp. 2843–2852ADSCrossRefGoogle Scholar
  63. Martin, T.Z. (1981) Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year, Icarus, 45, pp. 427–446ADSCrossRefGoogle Scholar
  64. Ono, A. and Paige, D.A. (1995) Martian polar frosts, Abstract for the “Solar System Ices” international symposium, Toulouse, FranceGoogle Scholar
  65. Paige, D.A. and Ingersoll, A.P. (1985) Annual heat balance of Martian polar caps: Viking observations, Science, 228, pp. 1160–1168ADSCrossRefGoogle Scholar
  66. Paige, D.A. and Wood, S.E. (1992) Modeling the Martian seasonal CO2 cycle: 2. inter-annual variability, Icarus, 99, pp. 15–27ADSCrossRefGoogle Scholar
  67. Paige, D.A., Crisp, D. and Santee, M.L. (1990a), It snows on mars, Bull. Am. Astron. Soc, 22, pp. 1075ADSGoogle Scholar
  68. Paige, D.A., Herkenhoff, K.E. and Murray, B.C. (19906), Mariner 9 observations of the south polar cap of Mars: evidence for residual CO2 frost, J. Geophys. Res., 95, pp. 1319–1335ADSCrossRefGoogle Scholar
  69. Paige, D.A. (1985) The annual heat balance of the Martian polar caps from Viking observations, Ph.D. thesis, Calif. Inst. of Technol., PasadenaGoogle Scholar
  70. Parker, D.C., Capen, C.F. and Beish, J.D. (1983) Exploring the martian artic, Sky & Telescope, 65, pp. 218–220ADSGoogle Scholar
  71. Pimentel, G., Forney, P. and Herr, K. (1974) Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res., 79, pp. 1623–1634ADSCrossRefGoogle Scholar
  72. Pollack, J.B., Haberle, R.M., Schaeffer, J. and Lee, H. (1990) Simulations of the general circulation of the Martian atmosphere, I, Polar processes, J. Geophys. Res., 95, pp. 1447–1473ADSCrossRefGoogle Scholar
  73. Pollack, J.B., Haberle, R.M., Murphy, J.R., Shaeffer, J. and Lee, H. (1993) Simulation of the general circulation of the Martian atmosphere II: seasonnal pressure variations, J. Geophys. Res., 98, (E2), pp. 3149–3181ADSCrossRefGoogle Scholar
  74. Rizk, B., Haberle, R.M., Hunten, D. and Pollack, J.B. (1995) Meridional transport and water reservoir in southern Mars during 1988-1989, Icarus, 118, pp. 39–50ADSCrossRefGoogle Scholar
  75. Svitek, T. and Murray, B. (1990) Winter frost at Viking Lander 2 site, J. Geophys. Res., pp. 1495–1510Google Scholar
  76. Talagrand, O., Hourdin, F. and Forget, F. (1991) The LMD Martian general circulation model: Results about the annual pressure cycle, Bull. Arn. Astron. Soc., 23, 1217 (oral presentation at the 23rd annual DPS meeting (Palo Alto, California).Google Scholar
  77. Tillman, J.E. and Guest, W. (1987) a, technical report, National Space Sciences Data CenterGoogle Scholar
  78. Tillman, J.E. (1988) Mars global atmospheric oscillations: Annually synchronized transient normal-mode oscillations and the triggering of global dust storms, J. Geophys. Res., 93, pp. 9433–9451ADSCrossRefGoogle Scholar
  79. Wall, S.D. (1981) Analysis of condensates formed at the Viking 2 lander site: the first winter, Icarus, 47, pp. 173–183ADSCrossRefGoogle Scholar
  80. Ward, W.R., Murray, B.C. and Malin, M.C. (1974) Climatic variations on Mars. 2. Evolution of carbon dioxide atmosphere and polar caps, J. Geophys. Res., 79, pp. 3387–3395ADSCrossRefGoogle Scholar
  81. Warren, S.G., Wiscombe, W.J. and Firestone, J.F. (1990) Spectral albedo and emissivity of CO2 in Martian polar caps: model results, J. Geophys. Res., 95, pp. 717–741Google Scholar
  82. Warren, S.G. (1986) Optical constants of carbon dioxide ice, Appl. Opt., 25, pp. 2650–2674ADSCrossRefGoogle Scholar
  83. Washburn, E. (1948) International critical tables of numerical data, physics, chemistry and technology, volume 3 New-York: Me Graw Hill.Google Scholar
  84. Wood, S.E. and Paige, D.A. (1992) Modeling the martian seasonal CO2 cycle: fitting the Viking lander pressure curves, Icarus, 99, pp. 1–14ADSCrossRefGoogle Scholar
  85. Zurek, R.W. and Martin, L.J. (1993) Interannual variability of planet-encircling dust storms on Mars, J. Geophys. Res., 98, pp. 3247–3259ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • François Forget
    • 1
  1. 1.Laboratoire de Météorologie Dynamique du CNRSUniversité Paris 6Paris Cedex 05France

Personalised recommendations