Advertisement

Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps

  • Russell G. Ross
  • Jeffrey S. Kargel
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Methods of measurement of thermal conductivity are briefly reviewed and representative data are presented for Solar System ices, including polymorphic modifications of H2O, clathrate hydrates, and the solidified gases CO2, CH4, and N2. Some general planetological implications are considered, with a special examination of the thermal state of the Martian polar caps. The total range of thermal conductivity of ices relevant to objects in the Solar System is about 2 orders of magnitude, not including the effects of pressure, porosity, or crystallinity. For the range of pressures encountered in icy satellites, pressure controls the thermal conductivity of crystalline water ice phases with a factor of six variation. The range of porosities expected in the regoliths of icy satellites ought to produce up to 3 orders of magnitude variation in thermal conductivity. The effect of these factors (composition, crystallinity, pressure, and porosity) on thermal conductivity is among the primary causes of differences in the geologic evolution of icy bodies.

Keywords

Guest Species Basal Melting Carbonic Acid Solution Viking Orbiter Image Polar Layered Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N. and Phillips, W.A. (1987) Thermal conductivity of ice and ice clathrate, Solid State Commun., 63, pp. 167–171.ADSCrossRefGoogle Scholar
  2. Andersson, O. and Suga, H. (1994a) Thermal conductivity of low-density amorphous ice, Solid State Commun., 91, pp. 985–988.ADSCrossRefGoogle Scholar
  3. Andersson, O. and Suga, H. (1994b) Thermal conductivity of the Ih and XI phases of ice, Phys. Rev., B50, pp. 6583–6588.ADSGoogle Scholar
  4. Andersson, P. and Ross, R.G. (1983) Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates, J. Phys. C: Solid State Phys., 16, pp. 1423–1432.ADSCrossRefGoogle Scholar
  5. Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S., Komatsu, G. and Kale, V.S. (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature, 352, pp. 589–594.ADSCrossRefGoogle Scholar
  6. Brown, R.H., Cruikshank, D.P., Veverka, J., Helfenstein, P. and Eluskiewicz, J. (1995) Surface composition and photometric properties of Triton, in: Cruikshank D.P. (Ed.), Neptune and Triton, pp. 991–1030, University of Arizona Press, Tucson.Google Scholar
  7. Callaway, J. (1959) Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, pp. 1046–1051.ADSzbMATHCrossRefGoogle Scholar
  8. Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids 2nd ed. Clarendon, Oxford.Google Scholar
  9. Consolmagno, G.J. and Lewis, J.S. (1978) The evolution of satellite interiors and surfaces, Icarus, 34, pp. 280–293.ADSCrossRefGoogle Scholar
  10. Cook, J.G. and Laubitz, M. J. (1983) The thermal conductivity of two clathrate hydrates, in Thermal Conductivity 17, ed. Hust J G (Plenum, New York), pp. 745–751.Google Scholar
  11. Cook, J.G. and Leaist, D.G. (1983) An exploratory study of the thermal conductivity of methane hydrate, Geophys. Res. Lett., 10, pp. 397–399.ADSCrossRefGoogle Scholar
  12. Croft, S.K. and Soderblom, L.A. (1991) Geology of the Uranian satellites, in: J.T. Bergstralh, Miner E.D. and Matthews M.S. (Eds.), Uranus, University of Arizona Press, Tucson, pp. 561–628.Google Scholar
  13. Cruikshank, D.P., Rousch, T.L., Moore, J.M., Sykes, M.V., Owen, T.C., Bartholomew, M.J., Brown, R.H. and Tryka, K.A. (1997) The surfaces of Pluto and Charon, in: Tholen D.J. and Stern S.A. (Eds.), Pluto and Charon, University of Arizona Press (in press).Google Scholar
  14. Davidson, D.W. (1973) Clathrate hydrates, in Water: A Comprehensive Treatise, vol. 2, ed Franks, F. (Plenum, New York), pp. 115–234.Google Scholar
  15. Dobrovolskis, A. and Ingersoll, A.P. (1975) Carbon dioxide-water clathrate a reservoir of CO2 on Mars, Icarus, 26, pp. 353–357.ADSCrossRefGoogle Scholar
  16. Ellsworth, K. and Schubert, G. (1983) Saturn’s icy satellites: Thermal and structural models, Icarus, 54, pp. 490–510.ADSCrossRefGoogle Scholar
  17. Flubacher, P., Leadbetter, A.J. and Morrison, J.A. (1960) Heat capacity of ice at low temperatures, J. Chem. Phys., 33, pp. 1751–1755.ADSCrossRefGoogle Scholar
  18. Håkansson, B., Andersson, P. and Bäckström, G. (1988) Improved hot-wire procedure for thermophysical measurements under pressure, Rev. sci. Instrum., 59, pp. 2269–2275.ADSCrossRefGoogle Scholar
  19. Handa, Y.P. and Cook, J.G. (1987) Thermal conductivity of xenon hydrate, J. Chem. Phys., 91, pp. 6327–6328.CrossRefGoogle Scholar
  20. Handa, Y.P., Tse, J.S., Klug, D.D. and Whalley, E. (1991) Pressure-induced phase transitions in clathrate hydrates, J. Chem. Phys., 94, pp. 623–627.ADSCrossRefGoogle Scholar
  21. Hobbs, P.V. (1974) Ice Physics. Oxford University Press, Oxford.Google Scholar
  22. Hogenboom, D.L., Karge], J.S., Ganasan, J. and Lee, L. (1995) Magnesium sulfate-water to 400 MPa using a novel piezometer: densities, phase equilibria, and planetological implications, Icarus, 115, pp. 258–277.ADSCrossRefGoogle Scholar
  23. Hogenboom, D.L., Kargel, J.S., Consolmagno, G.J., Holden, T.C. and Lee, L. (1997) The ammonia-water system and the chemical differentiation of icy satellites, Icarus (in press).Google Scholar
  24. Horai, K. (1991) Thermal conductivity of Hawaiian basalt: A new interpretation of Robertson and Peck’s data, J. Geophys. Research, 96, pp. 4125–4132.ADSCrossRefGoogle Scholar
  25. Horai, K. and Susaki, J. (1989) The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar, Phys. Earth Planet. Inter., 55, pp. 292–305.ADSCrossRefGoogle Scholar
  26. Kamb, B. (1973) Crystallography of ice, in: Whalley E., Jones S.J., and Gold L.W. (Eds.), Physics and Chemistry of Ice, pp. 28–41, Royal Soc. Canada, Ottawa.Google Scholar
  27. Kargel, J.S. (1990) Cryomagmatism in the Outer Solar System, Ph.D. dissertation, 309 pp., University of Arizona, Tucson.Google Scholar
  28. Kargel, J.S. (1992) Ammonia-water volcanism on icy satellites: Phase relations at 1 atmosphere, Icarus, 100, pp. 556–574.ADSCrossRefGoogle Scholar
  29. Kargel, J.S. and Strom, R.G. (1992) Ancient glaciation on Mars, Geology, 20, pp. 3–7.ADSCrossRefGoogle Scholar
  30. Kargel, J.S. and Lewis, J.S. (1993) The composition and early evolution of Earth, Icarus, 105, pp. 1–25.ADSCrossRefGoogle Scholar
  31. Kargel, J.S. and Pozio, S. (1996) The volcanic and tectonic history of Enceladus, Icarus, 119, pp. 385–404.ADSCrossRefGoogle Scholar
  32. Kargel, J.S., Baker, V.R., Begét, J.E., Lockwood, J.F., Péwé, T., Shaw, J.S., and Strom, R.G. (1995) Evidence of ancient continental glaciation in the Martian northern plains, J. Geophys. Res., 100, pp. 5351–5368.ADSCrossRefGoogle Scholar
  33. Kieffer, H.H. (1979) Mars south polar spring and summer temperatures: A residual CO2 frost, J. Geophys. Res., 84, pp. 8263–8288.ADSCrossRefGoogle Scholar
  34. Kieffer, H.H., Chase, S.C. Jr., Martin, T.Z., Miner, E.D. and Palluconi, F.D. (1976) Martian north pole summer temperatures: Dirty water ice, Science, 194, pp. 1341–1344.ADSCrossRefGoogle Scholar
  35. Kittel, C. (1986) Introduction to Solid State Physics, 6th ed. (Wiley, New York).Google Scholar
  36. Klinger, J. (1973) Thermal conductivity of ice single crystals at low temperatures, in: Whalley E., Jones S.J. and Gold L.W. (Eds.), Physics and Chemistry of Ice, pp. 114–116, Roy. Soc. Canada, Ottawa.Google Scholar
  37. Koloskova, L.A., Krupskii, I.N., Manzhelii, V.G. and Gorodilov, B.Ya. (1973) Thermal conductivity of solid nitrogen and carbon monoxide, Sov. Phys.-Solid State, 15, pp. 1278–1279.Google Scholar
  38. Konstantinov, V.A., Manzhelii, V.G., Smirnov, S.A. and Tolkachev, A.M. (1988) Heat transfer in solid CO2 and N2O: dependence on temperature and volume, Sov. J. Low Temp. Phys., 14, pp. 104–107.Google Scholar
  39. Kouchi, A., Greenberg, J.M., Yamamoto, T. and Mukai, T. (1992) Extremely low thermal conductivity of amorphous ice: relevance to comet evolution, Astrophys. J. Lett., 388, pp. L73–L76.ADSCrossRefGoogle Scholar
  40. Lewis, J.S. (1972) Low-temperature condensation from the solar nebula, Icarus, 16, pp. 241–252.ADSCrossRefGoogle Scholar
  41. Linke, W.F. (1958) Solubilities of inorganic and metal-organic compounds A-Ir, 1, D. Van Nostrand Co., Inc., Princeton, p. 461.Google Scholar
  42. Makogan, Y.F. (1981) Hydrates of natural gas. PennWell Books, Tulsa, Oklahoma.Google Scholar
  43. Malin, M.C. (1986) Density of Martian north polar layered deposits: Implications for composition, Geophys. Res. Lett., 13, pp. 444–447.ADSCrossRefGoogle Scholar
  44. Manzhelii, V.G. and Krupskii, I.N. (1968) Thermal conductivity of solid methane, Sov. Phys.-Solid State, 10, pp. 221–222.Google Scholar
  45. McCarthy, K.A. (1982) Thermal conduction in solids, in: McGraw-Hill Encyclopedia of Science ' Technology, 5th Ed., pp. 627–630, New York.Google Scholar
  46. Milton, D.J. (1974) Carbon dioxide hydrate and floods on Mars, Science, 183, pp. 654–656.ADSCrossRefGoogle Scholar
  47. Parsonage, N.G. and Staveley, L.A.K. (1978) Disorder in Crystals. Clarendon, Oxford.Google Scholar
  48. Presley, M.A. and Christensen, P.R. (1997) The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures, J. Geophys. Res., 102, pp. 9221–9229.ADSCrossRefGoogle Scholar
  49. Ross, R.G. (1991) Thermal conductivity and disorder in nonmetallic materials, Phys. Chem. Liq., 23, pp. 189–210.CrossRefGoogle Scholar
  50. Ross, R.G. and Andersson, P. (1982) Clathrate and other solid phases in the tetrahydrofuran-water system: thermal conductivity and heat capacity under pressure, Can. J. Chem., 60, pp. 881–892.CrossRefGoogle Scholar
  51. Ross, R.G., Andersson, P. and Bäckström, G. (1977) Thermal conductivity of nine solid phases of H2O, High Temp.-High Press., 9, pp. 87–96.Google Scholar
  52. Ross, R.G., Andersson, P. and Bäckström, G. (1981) Unusual PT dependence of thermal conductivity for a clathrate hydrate, Nature, 290, pp. 322–323.ADSCrossRefGoogle Scholar
  53. Ross, R.G., Andersson, P., Sundqvist, B. and Bäckström, G. (1984) Thermal conductivity of solids and liquids under pressure, Rep. Prog. Phys., 47, pp. 1347–1402.ADSCrossRefGoogle Scholar
  54. Slack, G.A. (1980) Thermal conductivity of ice, Phys. Rev., B22, pp. 3065–3071.ADSGoogle Scholar
  55. Squyres, S.W., McKay, C.P. and Reynolds, R.T. (1985) Temperatures within comet nuclei, J. Geophys. Res., 90, pp. 12,381–12,392.ADSCrossRefGoogle Scholar
  56. Steiner, G. and Kömle, N.I. (1991) A model of the thermal conductivity of porous water ice at low gas pressures, Planet. Space sci., 39, pp. 507–513.ADSCrossRefGoogle Scholar
  57. Stevenson, D.J. (1982) Volcanism and igneous processes in small icy satellites, Nature, 298, pp. 142–144.ADSCrossRefGoogle Scholar
  58. Stoll, R.D. and Bryan, G.M. (1979) Physical properties of sediments containing gas hydrates, J. Geophys. Res., 84, pp. 1629–1634.ADSCrossRefGoogle Scholar
  59. Takenouchi, S. and Kennedy, G.C. (1965) Dissociation pressures of the phase CO2.5.75 H2O, J. Geology, 73, pp. 383–390.Google Scholar
  60. Thomas, P., Squyres, S., Herkenhoff, K., Howard, A. and Murray, B. (1992) Polar deposits of Mars, in: H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (Eds.), Mars, University of Arizona Press, Tucson, pp. 767–798.Google Scholar
  61. Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. (ed) (1970), Thermophysical Properties of Matter, vol 2, Thermal Conductivity, Nonmetallic Solids. Plenum, New York.Google Scholar
  62. Tse, J.S. and White, M.A. (1988) Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: A thermal conductivity study of tetrahydrofuran hydrate, J. Phys. Chem., 92, pp. 5006–5011.CrossRefGoogle Scholar
  63. Wänke, H. and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets, Phil. Trans. Roy. Soc. London, A235, pp. 545–557.Google Scholar
  64. Warren, P.H. and Rasmussen, K.L. (1987) Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon, J. Geophys. Res., 92, pp. 3453–3465.ADSCrossRefGoogle Scholar
  65. Weiler, G. and Schwerdtfeger, P. (1977) Thermal processes and heat transfer processes of low-temperature snow, Antarctic Research Ser., 25, pp. 27–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Russell G. Ross
    • 1
  • Jeffrey S. Kargel
    • 2
  1. 1.University of Umeå, SwedenDerehamUK
  2. 2.U.S. Geological SurveyFlagstaffUSA

Personalised recommendations