Advertisement

Polar Stratospheric Clouds on Earth

A Review of Particle Thermodynamics, Nucleation and Growth Kinetics
  • Thomas Peter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

The physical chemistry of the clouds occuring in the Earth’s polar winter stratosphere is far from being well-understood despite their proximity compared to ices of other planets in the solar system. However, the scientific field is very rapidly developing. This paper summarizes the current state (early 1996) of our knowledge of the microphysics and heterogeneous chemistry of polar stratospheric clouds with emphasis on liquid and solid particle thermodynamics and on kinetics of non-reactive gas uptake leading to particle growth. The consequences of the present uncertainties for the chemical processing of stratospheric air are briefly discussed. Currently, the incomplete understanding of solid particle formation limits our prognostic capabilities. The question of whether in the next 8–10 years an Arctic ozone hole could develop, similar to the one observed in the southern hemisphere, is still open.

Keywords

Stratospheric Aerosol Ozone Hole Ozone Loss Polar Stratospheric Cloud Antarctic Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.G., Toohey, D.W., Brune, W.H. (1991) Free radicals within the Antarctic vortex: the role of CFC’s in Antarctic ozone loss, Science, 251, pp. 39–46.ADSCrossRefGoogle Scholar
  2. Beyer, K.D., Seago, S.W., Chang, H.Y., Molina, M.J. (1994) Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions, Geophys. Res. Lett, 216, pp. 871–874.ADSCrossRefGoogle Scholar
  3. Bigg, E.K., Ono, A., Thompson, W.J. (1970) Aerosols at altitudes between 20–37 km, Tellus, 22, pp. 550–563.ADSCrossRefGoogle Scholar
  4. Browell, E.V., Butler, C.F., Ismail, S., Robinette, P.A., Carter, A.F., Higdon, N.S., Toon, O.B., Schoeberl, M.R., Tuck, A.F. (1990) Airborne Lidar observations in the Arctic stratosphere: Polar stratospheric clouds, Geophys. Res. Lett., 17, pp. 385–388.ADSCrossRefGoogle Scholar
  5. Carslaw, K.S., Clegg, S.L., Brimblecombe, P. (1995) A thermodynamic model of the system HCI-HNO3-H2SO4-H2O from <200 to 328 K, J. Phys. Chem., 99, pp. 11557–11574.CrossRefGoogle Scholar
  6. Carslaw, K.S., Luo, B.P., Clegg, S.L., Peter, Th., Brimblecombe, P., Crutzen, P.J. (1994) Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett., 21, pp. 2479–2482.ADSCrossRefGoogle Scholar
  7. Crutzen, P.J. (1970) The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. Roy. Met. Soc, 96, pp. 320–325.ADSCrossRefGoogle Scholar
  8. Crutzen, P.J., Arnold, F. (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: A major cause for the springtime “ozone hole”, Nature, 324, pp. 651–655.ADSCrossRefGoogle Scholar
  9. Debye, P., Hückel, E. (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z., 24, pp. 185–206.zbMATHGoogle Scholar
  10. Deshler, T., Peter, Th., Müller, R., Crutzen, P.J. (1994) The lifetime of leewave-induced ice particles in the Arctic stratosphere: I. Balloonborne observations, Geophys. Res. Lett., 21, pp. 1327–1330.ADSCrossRefGoogle Scholar
  11. Drdla, K., Turco, R.P. (1990) A one-dimensional model of Type-I and Type-II PSC formation with temperature oscillations, XV. General Assembly EGS, Copenhagen.Google Scholar
  12. Drdla, K., Turco, R.P. (1991) Denitrification through PSC formation: A 1-D model incorporating temperature oscillations, J. Atraos. Chem., 12, pp. 319–366.CrossRefGoogle Scholar
  13. Drdla, K., Tabazadeh, A., Turco, R.P., Jacobson, M.Z., Dye, J.E., Twohy, C, Baumgardner, D., Kelly, K.K., Chan, R.P., Loewenstein, M. (1994) Analysis of the physical state of one Arctic polar stratospheric cloud based of observations, Geophys. Res. Lett., 21, pp. 2473–2478.ADSCrossRefGoogle Scholar
  14. Dye, J.E., Baumgardner, D., Gandrud, B.W., Kawa, S.R., Kelly, K.K., Loewenstein, M., Ferry, G.V., Chan, K.R., Gary, B.L. (1992) Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation, J. Geophys. Res., 97, pp. 8015–8034.ADSCrossRefGoogle Scholar
  15. Elrod, M.J., Koch, R.E., Kim, J.E., Molina, M.J. (1995) HC1 vapour pressures and reaction probabilities for C1ONO2+HC1 on liquid H2SO4-HNO3-HC1-H2O solutions, Faraday Discuss., 100, pp. 269–278.ADSCrossRefGoogle Scholar
  16. Fahey, D.W., Kelly K.K, Ferry G.V., Poole L.R., Wilson J.C., Murphy, D.M., Loewenstein, M., Chan K.R. (1989) In-situ measurements of total reactive nitrogen, total water, and aerosol in a polar stratospheric cloud, J. Geophys. Res., 94, pp. 11299–11315.ADSCrossRefGoogle Scholar
  17. Farman J.C., Gardiner B.G., Shanklin J.D. (1985) Large losses of total ozone in Antarctica reveal seasonal C1Ox/NOx interaction, Nature, 315, pp. 207–210.ADSCrossRefGoogle Scholar
  18. Fox, L.E., Worsnop, D.R., Zahniser, M.S., Wofsy, S.C. (1995) Metastable phases in polar stratospheric aerosols, Science, 267, pp. 351–355.ADSCrossRefGoogle Scholar
  19. Ha, A., Cohen, I., Zhao, X., Lee, M., Kivelson, D. (1996) Supercooled liquids and polyamorphism, J. Phys. Chem., 100, pp. 1–4.CrossRefGoogle Scholar
  20. Hallett, J., Lewis, R.E.J. (1967) Mother-of-pearl clouds, Weather, 22, pp. 56–65.ADSCrossRefGoogle Scholar
  21. Hanson, D.R. (1990) The vapor pressures of supercooled HNO3/H2O solutions, Geophys. Res. Lett., 17, pp. 421–423.ADSCrossRefGoogle Scholar
  22. Hanson, D., Mauersberger, K. (1988) Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett., 15, pp. 855–858.ADSCrossRefGoogle Scholar
  23. Hanson, D.R., Ravishankara, A.R. (1993) Reaction of C1ONO2 with HC1 on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and CIONO2 on frozen sulfuric acid, J. Geophys. Res., 98, pp. 22,931–22,936.ADSCrossRefGoogle Scholar
  24. Hanson, D.R., Ravishankara, A.R. (1994) Reactive uptake of CIONO2 onto sulfuric acid due to reaction with HC1 and H2O, J. Phys. Chem., 98, pp. 5728–5735.CrossRefGoogle Scholar
  25. Hanson D.R., Ravishankara A.R., Solomon S. (1994) Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations, J. Geophys. Res., 99, pp. 3615–3629.ADSCrossRefGoogle Scholar
  26. Hesstvedt, E. (1960) Mother-of-pearl clouds in Norway, Geophys. Publ, 20.Google Scholar
  27. Hofmann, D.J., Harder, J.W., Rolf, S.R., Rosen, J.M. (1987) Balloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986, Nature, 326, pp. 59–62.ADSCrossRefGoogle Scholar
  28. Hofmann, D.J., Deshler, T., Arnold, F., Schlager, H. (1990) Balloon observations of nitric acid aerosol formation in the Arctic stratosphere: II. aerosol, Geophys. Res. Lett., 17, pp. 1279–1282.ADSCrossRefGoogle Scholar
  29. Iraci, L.T. Middlebrook, A.M., Wilson, M.A., Tolbert, M.A. (1994) Growth of nitric acid hydrates on thin sulfuric acid films, Geophys. Res. Lett., 21, pp. 867–870.ADSCrossRefGoogle Scholar
  30. Ji, K., Petit, J-C. (1993) Identication par microcalorimetrie d’un nouvel hydrate de l’acide nitrique pouvant jouer un role dans la chimie heterogene stratospherique, C. R. Acad. sci., 316, pp. 1743–1748.Google Scholar
  31. Junge, C.E., Manson, J.E. (1961) Stratospheric aerosol studies, J. Geophys. Res., 66, pp. 2163–2182.ADSCrossRefGoogle Scholar
  32. Koop, T., Biermann, U.M., Raber, W., Luo, B.P., Crutzen, P.J., Peter, Th. (1995) Do stratospheric aerosol droplets freeze above the ice frost point?, Geophys. Res. Lett., 22, pp. 917–920.ADSCrossRefGoogle Scholar
  33. Larsen, N., Knudsen, B., Rosen, J.M., Kjome, N.T., Kyrö, E. (1996) Balloonborne backscatter observations of type 1 PSC formation: inference about physical state from trajectory analysis, Geophys. Res. Lett., 23, pp. 1091–1094.ADSCrossRefGoogle Scholar
  34. Luo, B.P., Peter, Th., Crutzen, P. (1994a) Freezing of stratospheric aerosol droplets, Geophys. Res. Lett., 21, pp. 1447–1450.ADSCrossRefGoogle Scholar
  35. Luo, B.P., Clegg, S.L., Peter, Th., Müller, R., Crutzen, P.J. (1994b) HC1 solubility and liquid diffusion in aqueous sulfuric acid, Geophys. Res. Lett., 21, pp. 49–52.ADSCrossRefGoogle Scholar
  36. Luo, B.P., Carslaw, K.S., Peter, Th., Clegg, S. (1995) Vapour pressures of H2SO4/HNO3/HCI/ HBr/H2O solutions to low temperatures, Geophys. Res. Lett., 22, pp. 247–250.ADSCrossRefGoogle Scholar
  37. Marti, J.J., Mauersberger, K. (1994) Evidence for nitric acid pentahydrate formed under stratospheric conditions, J. Phys. Chem., 98, pp. 6897–6899.CrossRefGoogle Scholar
  38. McCormick, M.P., Steele, H.M., Hamill, P., Chu, W.P., Swissler, T.J. (1982) Polar stratospheric cloud sightings by SAM II, J. Atmos. sci., 39, pp. 1387–1397.ADSCrossRefGoogle Scholar
  39. Meilinger, S., Koop, T., Luo, B.P., Huthwelker, Th., Carslaw, K.S., Krieger, U., Crutzen, P.J., Peter, Th. (1995) Size-dependent Stratospheric Droplet Composition in Mesoscale Temperature Fluctuations and their Potential Role in PSC Freezing, Geophys. Res. Lett., 22, pp. 3031–3034.ADSCrossRefGoogle Scholar
  40. Middlebrook, A.M., Iraci, L.T., McNeil, L.S., Koehler, B.G., Wilson, M.A., Saastad, O.W., Tolbert, M.A., Hanson, D.R. (1993) Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes, J. Geophys. Res., 98, pp. 20473–20481.ADSCrossRefGoogle Scholar
  41. Molina, L.T., Molina, M.J. (1987) Production of Cl2O2 from the self-reaction of the CIO radical, J. Phys. Chem., 91, pp. 433–436.CrossRefGoogle Scholar
  42. Molina, M.J., Rowland, F.S. (1974) Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature, 249, pp. 810–812.ADSCrossRefGoogle Scholar
  43. Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D. (1993) Physical chemistry of the H2SO4/HNO3/H2O system: Implications for polar stratospheric clouds, Science, 261, pp. 1418–1423.ADSCrossRefGoogle Scholar
  44. Müller, R., Peter, Th., Crutzen, P.J., Oelhaf, H., Adrian, G.P., v. Clarmann, Th., Wegner, A., Schmidt, U., Lary, D. (1994) Chlorine chemistry and the potential for ozone depletion in the Arctic stratosphere in 1991/92, Geophys. Res. Lett., 21, pp. 1427–1430.ADSCrossRefGoogle Scholar
  45. Ohtake, T. (1993) Freezing points of H2SO4 aqueous solutions and formation of polar stratospheric clouds, Tellus, 45B, pp. 138–144.ADSGoogle Scholar
  46. Peter, Th., Crutzen, P.J. (1993) The role of stratospheric cloud particles in polar ozone depletion — An overview, J. Aerosol sci., 24, pp. S119–S120.CrossRefGoogle Scholar
  47. Peter, Th., Brühl, C, Crutzen, P.J. (1991) Increase in the PSC-formation probability caused by high-flying aircraft, Geophys. Res. Lett., 18, pp. 1465–1468.ADSCrossRefGoogle Scholar
  48. Peter, Th., Müller, R., Drdla, K., Petzoldt, K., Reimer, E. (1992) A micro-physical box model for EASOE: Preliminary results for the January/February 1990 PSC event over Kiruna, Ber. Bunsenges. Phys. Chem., 96, pp. 362–367.CrossRefGoogle Scholar
  49. Peter, Th., Müller, R., Crutzen, P.J., Deshler, T. (1994) The lifetime of leewave-induced ice particles in the Arctic stratosphere: II. Stabilization due to NAT-coating, Geophys. Res. Lett., 21, pp. 1331–1334.ADSCrossRefGoogle Scholar
  50. Pitzer, K.S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem., 77, pp. 268–277.CrossRefGoogle Scholar
  51. Pitzer, K.S. (1987) A thermodynamic model for aqueous solutions of liquid-like density, Reviews Minerology, 17, pp. 97–142.Google Scholar
  52. Poole, L.R., McCormick, M.P. (1988a) Airborne lidar observations of polar stratospheric clouds: indications of two distinct growth stages, Geophys. Res. Lett., 15, pp. 21–23.ADSCrossRefGoogle Scholar
  53. Poole, L.R., McCormick, M.P. (1988b) Polar stratospheric clouds and the Antarctic ozone hole, J. Geophys. Res., 93, pp. 8423–8430.ADSCrossRefGoogle Scholar
  54. Poole, L.R., Pitts, M.C. (1994) Polar stratospheric cloud climatology based on SAM II observations from 1978-1989, J. Geophys. Res., 99, pp. 13,083–13,089.ADSCrossRefGoogle Scholar
  55. Poole, L.R., Solomon, S., Gandrud, B.W., Powell, K.A., Dye, J.E. (1990) The polar stratospheric cloud event of January 24, 1989, Geophys. Res. Lett., 17, pp. 537–540.ADSCrossRefGoogle Scholar
  56. Ravishankara, A.R., Hanson, D.R. (1996) Differences in the reactivity of type-I polar stratospheric clouds depending on their phase, J. Geophys. Res., 101, pp. 3885–3890.ADSCrossRefGoogle Scholar
  57. Schlager, H., Arnold, F., Hofmann, D., Deshler, T. (1990) Balloon observations of nitric acid aerosol formation in the Arctic stratosphere: I. Gaseous nitric acid, Geophys. Res. Lett, 17, pp. 1275–1278.ADSCrossRefGoogle Scholar
  58. Solomon, S., Garcia, R.R., Rowland, F.S., Wuebbles, D.J. (1986) On the depletion of Antarctic ozone, Nature, 321, pp. 755–758.ADSCrossRefGoogle Scholar
  59. Song, N. (1994) Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds, Geophys. Res. Lett., 21, pp. 2709–2712.ADSCrossRefGoogle Scholar
  60. Stanford, J.L., Davis, J.S. (1974) A century of stratospheric cloud reports: 1870-1972, Bull. Amer. Meteorol. Soc, 55(3), pp. 213–219.CrossRefGoogle Scholar
  61. Steele, H.M., Hamill, P. (1981) Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere, J. Aerosol sci., 12, pp. 517–528.CrossRefGoogle Scholar
  62. Tabazadeh, A., Turco, R.P., Drdla, K., Jacobson, M.Z. (1994) A study of Type I polar stratospheric cloud formation, Geophys. Res. Lett., 21, pp. 1619–1622.ADSCrossRefGoogle Scholar
  63. Tabazadeh, A., Toon, O.B., Hamill P. (1995) Freezing behavior of stratospheric sulfate aerosols inferred from trajectory studies, Geophys. Res. Lett., 22, pp. 1725–1728.ADSCrossRefGoogle Scholar
  64. Tolbert, M.A., Middlebrook, A.M. (1990) Fourier transform infrared studies of model polar stratospheric cloud surfaces: Growth and evaporation of ice and nitric acid/ice, J. Geophys. Res., 95, pp. 22,423–22,431.ADSCrossRefGoogle Scholar
  65. Tolbert, M.A., Koehler, B.G., Middlebrook, A.M. (1992) Spectroscopic studies of model polar stratospheric cloud film, Spectro. Acta., 48A, pp. 1303–1313.ADSCrossRefGoogle Scholar
  66. Toon, O.B., Hamill, P., Turco, R.P., Pinto, J. (1986) Condensation of HNO3 and HC1 in the winter polar stratospheres, Geophys. Res. Lett., 13, pp. 1284–1287.ADSCrossRefGoogle Scholar
  67. Toon, O.B., Tolbert, M.A. (1995) Spectroscopic evidence against nitric acid trihydrate in polar stratospheric clouds, Nature, 375, pp. 218–221.ADSCrossRefGoogle Scholar
  68. Toon, O.B., Turco, R.P., Jordan, J., Goodman, J., Ferry, G. (1989) Physical processes in polar stratospheric ice clouds, J. Geophys. Res., 94, pp. 11,359–11,380.ADSCrossRefGoogle Scholar
  69. Toon, O.B., Browell, E.V., Kinne, S., Jordan, J. (1990) An analysis of Lidar observations of polar stratospheric clouds, Geophys. Res. Lett., 17, pp. 393–396.ADSCrossRefGoogle Scholar
  70. Volkert, H., Intes, D. (1992) Orographically forced stratospheric waves over northern Scandinavia, Geophys. Res. Lett., 19, pp. 1205–1208.ADSCrossRefGoogle Scholar
  71. Waters, J.W., Froidevaux, L., Read, W.G., Manney, G.L., ELson, L.S., Flower, D.A., Jarnot, R.F., Harwood, R.S. (1993) Stratospheric ClO and ozone from the microwave limb sounder on the Upper Atmospheric Research Satellite, Nature, 362, pp. 597–602.ADSCrossRefGoogle Scholar
  72. Wofsy, S.C., Salawitch, R.J., Yatteau, J.H., McElroy, M.B., Gandrud, B.W., Dye, J.E., Baumgardner, D. (1990) Condensation of HNO3 on falling ice particles: Mechanism for denitrification of the polar stratosphere, Geophys. Res. Lett., 17, pp. 449–452.ADSCrossRefGoogle Scholar
  73. Worsnop, D.R., Fox, L.E., Zahniser, M.S., Wofsy, S.C. (1993) Vapor pressures of solid hydrates of nitric acid: Implications for polar stratospheric clouds, Science, 259, pp. 71–74.ADSCrossRefGoogle Scholar
  74. WMO (1989) World Meteorological Organisation, Global Ozone Research and Monitoring Project, Report No.20, Scientific Assessment of Stratospheric Ozone, Geneva.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Thomas Peter
    • 1
  1. 1.Max-Planck-Institut für ChemieMainzGermany

Personalised recommendations