Terrestrial Snow Studies from Remote Sensing in the Solar Spectrum and the Thermal Infrared

  • M. Fily
  • C. Leroux
  • J. Lenoble
  • C. Sergent
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)


Large areas on earth are covered permanently or seasonally by snow, ice sheets, or sea ice. The widespread presence of snow and ice increases drastically the surface albedo of these areas and significantly influences climate. Consequently, variations of snow and ice cover are good indications of climatic change. A knowledge of the distribution and abundance of snow and ice are critical to such practical concerns as water supply, avalanche forecasting and routing of ships over ice-infested seas. It is often difficult to get ground data over such inaccessible, large and highly variable areas. Remote sensing from space is a good candidate for their study because satellite data can provide spatial and temporal coverage on a global scale.


Snow Cover Solar Zenith Angle Liquid Water Content Snow Surface Snow Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askebjer, P. et al. (30 authors) (1995) Optical properties of the South Pole ice at depths between 0.8 and 1 kilometer, Science, 267, pp. 1147–1150.ADSCrossRefGoogle Scholar
  2. Bourdelles, B. and Fily, M. (1993) Snow grain size determination from Landsat imagery over Terre-Adelie, Antarctica, Annals of Glaciology, 17, pp. 86–92.ADSGoogle Scholar
  3. Bohren, C.F. (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles, J. Atmos. sci., 43(5), pp. 468–475.ADSCrossRefGoogle Scholar
  4. Brewster, M.Q. and Tien, C.L. (1982) Radiative transfer in packed fluidized beds: dependent versus independent scattering, J. Heat Transfer, 104, pp. 573–579.CrossRefGoogle Scholar
  5. Brun, E., Martin, E., Simon, V., Gendre, C. and Coleou, C. (1989) An energy and mass model of snow cover suitable for operationnal avalanche forecasting, J. Glaciol., 35(121), pp. 333–342.ADSGoogle Scholar
  6. Brun, E., David, P., Sudul, M. and Brugnot, G. (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38(128), pp. 13–22.ADSGoogle Scholar
  7. Cachier, H., Bremond, M.P. and Buat-Menard, P. (1989) Determination of atmospheric soot carbon with a simple thermal method, Tellus, 41B, pp. 379–390.ADSCrossRefGoogle Scholar
  8. Cai, Q. and Liou, K.N. (1982) Polarized light scattering by hexagonal ice crystals: theory, Applied Optics, 21(19), pp. 3569–3580.ADSCrossRefGoogle Scholar
  9. Carlson, R.W., Arakelian, T. and Smythe, W.D. (1992) Spectral reflectance of Antarctic snow: ”Ground truth” and spacecraft measurements, Antarct. J. USA, 27, pp. 296–298.Google Scholar
  10. Carroll, J.J. and Fitch, B.W. (1981) Dependence of snow albedos on solar elevation and cloudiness at the South Pole, J. Geophys. Res, 86, pp. 5271–5276.ADSCrossRefGoogle Scholar
  11. Choudhury, B.J., Mo, T., Wang, J.R. and Chang, A.T.C (1981) Albedo and flux extinction coefficients of impure snow for diffuse short wave radiation, Cold Region Science and Technology, 5, pp. 119–125.CrossRefGoogle Scholar
  12. Chylek, P., Ramaswamy, V. and Srivastava, V. (1983) Albedo of soot-contaminated snow, J. Geophys. Res., 88(C15), pp. 10837–10843.ADSCrossRefGoogle Scholar
  13. Colbeck, S.C. (1991) The layered character of snow covers, Reviews of Geophysics, 29(1), pp. 81–96.ADSCrossRefGoogle Scholar
  14. Colbeck, S.C, Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., Mc. Clung, D. and Morris, E. (1990) The International Classification for Seasonal Snow on the Ground, Int. Comm. Snow and Ice (IAHS), World Data Center A for Glaciology, U. of Colorado, Boulder, CO, USA.Google Scholar
  15. Comiso, J.C. (1994) Surface temperatures in the polar regions from Nimbus 7 Temperature Humidity Infrared Radiometer, J. Geophys. Res., 99(C3), pp. 5181–5200.ADSCrossRefGoogle Scholar
  16. Dedieu, J.P. and Elizechea E. (1988) Surveillance satellitaire des surfaces englacees et enneigées dans les Alpes francaises par mesures de reflectances visibles et proche infrarouge issues des capteurs SPOT et Landsat Thematic Mapper, In. W.O. Proc. 4th International Colloquium on Spectral Signatures of Objets in Remote Sensing, pp. 371–375.Google Scholar
  17. De Haan, J.F., Bosma, P.B. and Hovenier, J.W. (1987) The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., 183, pp. 371–391.ADSGoogle Scholar
  18. Deschamps, P.Y., Breon, F.M., Bricaud, A., Buriez, J.C, Deuze, J.L., Herman, M., Leroy, M., Podaire, A. and Seze, G. (1995) The POLDER mission: instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sens., in press.Google Scholar
  19. Dozier, J. (1984) Snow reflectance from Landsat 4 Thematic Mapper, IEEE Trans. Geosci. Remote Sens., GE22, pp. 323–328.ADSCrossRefGoogle Scholar
  20. Dozier, J. and Warren, S.G. (1982) Effect of viewing angle on the infrared brightness temperature of snow, Water Resourc. Res., 18(5), pp. 1424–1434.ADSCrossRefGoogle Scholar
  21. Dozier, J. (1989) Spectral signature of Alpine Snow cover from the Landsat Thematic Mapper, Remote Sens. Environ., 28, pp. 9–22.CrossRefGoogle Scholar
  22. Dowdeswell, J.A. and Me Intyre, N.F. (1987) The surface topography of large ice masses from Landsat imagery, J. Glaciol., 33, pp. 16–23.ADSGoogle Scholar
  23. Duguay, C.R. and Le Drew, E.F. (1992) Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain, Photogrammetric Engineering and Remote Sensing, 58(5), pp. 551–558.ADSGoogle Scholar
  24. Dutton, E.G., Stone, R.S. and De Luisi, J.J. (1989) South Pole surface radiation balance measurements, April 1986 to February 1988, NOAA Data Rep. ERL.-ARL-17. Natl. Oceanic and Atmos. Adm., Washington, D.C., (Available from NOAA Air Resources Laboratory Silver Spring, Maryland).Google Scholar
  25. Egan, W.G., Johnson, W.R. and Whitehead, V.S. (1991) Terrestrial polarization imagery obtained from the Space Shuttle. Characterization and interpretation, Appl. Optics, 30, pp. 435–442.ADSCrossRefGoogle Scholar
  26. Goloub, P., Herman, M., Deuze, J.L. and Frouin, R. (1992) Contrast between polarization properties of snow-ice and clouds,Antarct. J. USA, 27(5), pp. 199–201.Google Scholar
  27. Good, W. (1989) Laboratory techniques for the characterisation of snow structures, ESA SP, 302, pp. 147–151.ADSGoogle Scholar
  28. Grenfell, T.C. (1992) A radiative transfer model for sea ice with vertical structure variations, J. Geophys. Res., 96, pp. 16 991–17001.ADSGoogle Scholar
  29. Grenfell, T.C. and Perovich, D.K. (1981) Radiation absorption coefficients of poly-cristaline ice from 400 to 1400 nm, J. Geophys. Res., 86, pp. 7447–7450.ADSCrossRefGoogle Scholar
  30. Grenfell, T.C, Warren, S.G. and Mullen, P.C. (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 99(D9), pp. 18 669–18 684.Google Scholar
  31. Haefliger, M., Steffen, K. and Fowler, C. (1993) AVHRR surface temperature and narrowband albedo comparison with ground measurements for the Greenland ice sheet, Annals of Glaciology, 17, pp. 49–54.ADSGoogle Scholar
  32. Hall, D.K. and Martinec, J. (1985) Remote Sensing of Ice and Snow. Chapman and Hall.Google Scholar
  33. Hall, D.K., Kovalick, W.M. and Chang, A.T.C. (1990) Satellite-derived reflectance of snow-covered surfaces in Northern Minnesota, Remote Sens. Environ., 33, pp. 87–96.CrossRefGoogle Scholar
  34. Hall, D.K., Foster, J.L. and Chang, A.T.C. (1992) Reflectance of snow as measured in situ and from space in Sub-Arctic areas in Canada and Alaska, IEEE Trans. Geosci Remote Sens., 30(3), pp. 634–637.ADSCrossRefGoogle Scholar
  35. Hansen, J.E. and Hovenier, J.W. (1971) The doubling-adding method applied to multiple scattering of polarized light, J. Quant. Spectrosc. Radiative Transfer, 11, pp. 809–812.ADSCrossRefGoogle Scholar
  36. Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge, University Press.Google Scholar
  37. Hess, M. and Wiegner, M. (1994) COP: a data library of optical properties of hexagonal ice crystals, Applied Optics, 33(33), pp. 7740–7746.ADSCrossRefGoogle Scholar
  38. Kergomard, C, Bonnel, B. and Fouquart, Y. (1993) Retrieval of surface radiative fluxes on the marginal zone of sea ice from operational satellite data, Annals of Glaciology, 17, pp. 201–206.ADSGoogle Scholar
  39. Key, J. and Haefliger, M. (1992) Arctic ice surface temperature retrieval from AVHRR thermal channels, J. Geophys. Res., 97(D5), pp. 5885–5893.ADSCrossRefGoogle Scholar
  40. Kou, L., Labrie, D. and Chylek, P. (1993) Refractive indices of water and ice in the 0.65 to 2.5 μm spectral range, Appl. Optics., 32, pp. 3531–3540.ADSCrossRefGoogle Scholar
  41. Kneizys, F.X., Shettle, E.P., Abreu, L.W., Chetwynd, J.H., Anderson, G.P., Gallery, W.O., Selby, J.E.A. and Clough, S.A. (1988), Users guide to LOWTRAN-7), Air force Geophysics Laboratory, publication AFGL-TR-880177.Google Scholar
  42. LaChapelle, E.R. (1969) Field guide to snow crystals). University of Washington Press, Seattle.Google Scholar
  43. Lenoble, J. (editor) (1985) Radiative transfer in scattering and absorbing atmospheres: standard computational procedures A. Deepak Pub., Hampton, Va, USA, 300 p.Google Scholar
  44. Li, S. (1982) A model for the anisotropic reflectance of pure snow, M.S. Thesis, U. California, 60 p.Google Scholar
  45. Lucas, R.M. and Harrison, A.R. (1990) Snow Observation by Satellite. A Review. Remote Sens. Reviews, 4(2), pp. 285–348.CrossRefGoogle Scholar
  46. Lucchita, B.K. and Ferguson, H.M. (1986) Antarctica: measuring glacier velocityfrom satellite images, Science, 234(4780), pp. 1105–1108.ADSCrossRefGoogle Scholar
  47. Matson, M. (1991) NOAA satellite snow cover data, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 90, pp. 213–218.Google Scholar
  48. Mätzler, C. (1996) Microwave properties of ice and snow, this issue Google Scholar
  49. Middleton, W.E.K. and Mungall, A.G. (1952) The luminous directional reflectance of snow, J. Opt. Soc. Amer., 42, pp. 572–579.ADSCrossRefGoogle Scholar
  50. Mishchenko, M.I. (1992) Polarization characteristics of the coherent backscatter opposition effect, Earth, Moon, and Planets, 58, pp. 127–144.ADSCrossRefGoogle Scholar
  51. O’Brien, H.W. and Munis, R.H. (1975) Red and near-infrared spectral reflectance of snow, CRREL Res. Rep., 332.Google Scholar
  52. Orheim, O. and Lucchita, B.K. (1987) Snow and ice studies by Thematic Mapper and multispectral scanner Landsat images, Annals of Glaciology, 9, pp. 109–118.ADSGoogle Scholar
  53. Orheim, O. and Lucchita, B.K. (1988) Numerical analysis of Landsat Thematic Mapper images of Antarctica: surface temperatures and physical properties, Annals of Glaciology, 11, pp. 109–120.ADSGoogle Scholar
  54. Paul, A. and Cooper, R. (1994) A simple shape-from-shading algorithm applied to images of ice-covered terrain, IEEE Trans. Geosci. Remote Sens., 326, pp. 1196–1198.CrossRefGoogle Scholar
  55. Perovich, D.K. and Govoni, J.W. (1991) Absorption coefficients of ice from 250 to 400 nm, Geophys. Res. Lett., 18, pp. 1233–1235.ADSCrossRefGoogle Scholar
  56. Proy, C., Tanre, D. and Deschamps, P.Y. (1989) Evaluation of topographic effects in remotely sensed data, Remote Sens. Environ., 30, pp. 21–32.CrossRefGoogle Scholar
  57. Ropelewski, C.F. (1991), Real-time monitoring of global snow cover, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 90, pp. 225–229.Google Scholar
  58. Rott, H. and Markl, G. (1989) Improved Snow and Glacier Monitoring by the Landsat Thematic Mapper, ESA SP, 1102, pp. 3–12.Google Scholar
  59. Salisbury, J.W., D’Aria, D.M. and Wald, A. (1994) Measurements of the thermal infrared spectral reflectance of frost, snow, and ice, J. Geophys. Res., 99(B12), pp. 24235–24240.ADSCrossRefGoogle Scholar
  60. Seko, K., Furukawa, T., Nishio, F. and Watanabe, O. (1993) Undulating topography on the Antarctic ice sheet revealed by NOAA AVHRR images, Annals of Glaciology, 17, pp. 55–62.ADSGoogle Scholar
  61. Sergent, C, Pougatch, E., Sudul, M. and Bourdelles, B. (1993) Experimental investigation of optical properties for various types of snow, Annals of Glaciology, 17, pp. 281–287.ADSGoogle Scholar
  62. Sherjal, I. and Fily, M. (1994) Temporal variations of microwave brightness temperatures over Antarctica, Annals of Glaciology, 20, pp. 19–25.ADSCrossRefGoogle Scholar
  63. Stamnes, K., Tsay, S., Wiscombe, W. and Jayaweera, K. (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, pp. 2502–2509.ADSCrossRefGoogle Scholar
  64. Steffen, K. (1987) Bidirectionnal reflectance of snow at 500-600 nm, in Large Scale Effects of Seasonal Snow Cover (ed. by Goodison), IAHS, 166, pp. 415–425.Google Scholar
  65. Stephenson, S.N. and Zwally, H.J. (1989) Ice-shelf topography and structure determined using satellite-radar altimetry and Landsat imagery, Annals of Glaciology, 12, pp. 162–169.ADSGoogle Scholar
  66. Surdyk, S. and Fily, M. (1995) Results of a stratified snow emissivity model based on the wave approach: Application to the Antarctic ice sheet, J. Geophys. Res., 100 C5, pp. 8837–8848.ADSCrossRefGoogle Scholar
  67. Takano Y. and Jayaweera K. (1985) Scattering phase matrix for hexagonal ice crystals computed from ray optics, Applied Optics, 24(19), pp. 3254–3263.ADSCrossRefGoogle Scholar
  68. Tanre D., Deroo, C, Duhaut, P., Herman, M., Morcrette, J.J., Perbos, J. and Deschamps, P.Y. (1986) Simulation of the Satellite Signal in the Solar Spectrum, 115 p., Laboratoire d’Optique Atmosphérique, 59655 Villeneuve d’Asq Cedex, France.Google Scholar
  69. Taylor, V.R. and Stowe, L.L. (1984) Reflectance characteristics of uniform earth and cloud surfaces derived from Nimbus 7-ERBE, /. Geophys. Res., 89, pp. 4987–4996.ADSCrossRefGoogle Scholar
  70. Verbiscer, A.J. and Veverka, J. (1990) Scattering properties of natural snow and frost: comparison with icy satellite photometry, Icarus, 88, pp. 418–429.ADSCrossRefGoogle Scholar
  71. Verbiscer, A.J. and Helfenstein, P. (1996) Reflectance spectroscopy of icy surfaces, this issue.Google Scholar
  72. Warren, S.G. and Wiscombe, W.J. (1980) A model for the spectral albedo of snow II, snow containing atmospheric aerosols, J. Atmos. sci., 37, pp. 2734–2745.ADSCrossRefGoogle Scholar
  73. Warren, S.G. (1982) Optical properties of snow, Rev. of geophys. and space phys., 20(1), pp. 67–89.MathSciNetADSCrossRefGoogle Scholar
  74. Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave, Appl. Optics, 23(8), pp. 1206–1255.ADSCrossRefGoogle Scholar
  75. Wendler, G. and Kelley, J. (1988) On the albedo of snow in Antarctica: contribution to I.A.G.O., J. Glaciol., 34, pp. 19–25.ADSGoogle Scholar
  76. West, R., Tsang, L. and Winebrenner, D.P. (1993) Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes. IEEE Trans. Geosci. Remote Sens., 31, pp. 426–437.ADSCrossRefGoogle Scholar
  77. Williams, R.S. and Ferrigno, J.G. (1993) Satellite image atlas of glaciers of the world, Glaciers of Europe, USGS professionnal paper, 1386-E, 164 p.Google Scholar
  78. Winther, J.G. (1993) Studies of snow surface characteristics by Landsat TM in Dronning Maud Land, Antarctica, Annals of Glaciology, 17, pp. 27–34.ADSGoogle Scholar
  79. Wiscombe, W.J. and Warren, S.G. (1980) A model for the spectral albedo of snow I: Pure snow, J. Atmos. sci., 37, pp. 2712–2733.ADSCrossRefGoogle Scholar
  80. World Climate Research Programme (1986) A preliminary cloudless standard atmosphere for radiation computation. Prepared by the Radiation Commission of the International Association for Meteorology and Atmospheric Physics, WCP-112, WMO/TD, 24.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • M. Fily
    • 1
  • C. Leroux
    • 1
  • J. Lenoble
    • 2
  • C. Sergent
    • 3
  1. 1.Laboratoire de Glaciologie et Géophysique de l’EnvironnementCNRS, UJFSaint MArtin D’heres cedexFrance
  2. 2.Laboratoire d’Optique Atmosphérique UniversitéLilleFrance
  3. 3.Centre d’Etude de la NeigeMétéo-FranceGrenobleFrance

Personalised recommendations