Skip to main content

Terrestrial Snow Studies from Remote Sensing in the Solar Spectrum and the Thermal Infrared

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Large areas on earth are covered permanently or seasonally by snow, ice sheets, or sea ice. The widespread presence of snow and ice increases drastically the surface albedo of these areas and significantly influences climate. Consequently, variations of snow and ice cover are good indications of climatic change. A knowledge of the distribution and abundance of snow and ice are critical to such practical concerns as water supply, avalanche forecasting and routing of ships over ice-infested seas. It is often difficult to get ground data over such inaccessible, large and highly variable areas. Remote sensing from space is a good candidate for their study because satellite data can provide spatial and temporal coverage on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askebjer, P. et al. (30 authors) (1995) Optical properties of the South Pole ice at depths between 0.8 and 1 kilometer, Science, 267, pp. 1147–1150.

    Article  ADS  Google Scholar 

  • Bourdelles, B. and Fily, M. (1993) Snow grain size determination from Landsat imagery over Terre-Adelie, Antarctica, Annals of Glaciology, 17, pp. 86–92.

    ADS  Google Scholar 

  • Bohren, C.F. (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles, J. Atmos. sci., 43(5), pp. 468–475.

    Article  ADS  Google Scholar 

  • Brewster, M.Q. and Tien, C.L. (1982) Radiative transfer in packed fluidized beds: dependent versus independent scattering, J. Heat Transfer, 104, pp. 573–579.

    Article  Google Scholar 

  • Brun, E., Martin, E., Simon, V., Gendre, C. and Coleou, C. (1989) An energy and mass model of snow cover suitable for operationnal avalanche forecasting, J. Glaciol., 35(121), pp. 333–342.

    ADS  Google Scholar 

  • Brun, E., David, P., Sudul, M. and Brugnot, G. (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38(128), pp. 13–22.

    ADS  Google Scholar 

  • Cachier, H., Bremond, M.P. and Buat-Menard, P. (1989) Determination of atmospheric soot carbon with a simple thermal method, Tellus, 41B, pp. 379–390.

    Article  ADS  Google Scholar 

  • Cai, Q. and Liou, K.N. (1982) Polarized light scattering by hexagonal ice crystals: theory, Applied Optics, 21(19), pp. 3569–3580.

    Article  ADS  Google Scholar 

  • Carlson, R.W., Arakelian, T. and Smythe, W.D. (1992) Spectral reflectance of Antarctic snow: ”Ground truth” and spacecraft measurements, Antarct. J. USA, 27, pp. 296–298.

    Google Scholar 

  • Carroll, J.J. and Fitch, B.W. (1981) Dependence of snow albedos on solar elevation and cloudiness at the South Pole, J. Geophys. Res, 86, pp. 5271–5276.

    Article  ADS  Google Scholar 

  • Choudhury, B.J., Mo, T., Wang, J.R. and Chang, A.T.C (1981) Albedo and flux extinction coefficients of impure snow for diffuse short wave radiation, Cold Region Science and Technology, 5, pp. 119–125.

    Article  Google Scholar 

  • Chylek, P., Ramaswamy, V. and Srivastava, V. (1983) Albedo of soot-contaminated snow, J. Geophys. Res., 88(C15), pp. 10837–10843.

    Article  ADS  Google Scholar 

  • Colbeck, S.C. (1991) The layered character of snow covers, Reviews of Geophysics, 29(1), pp. 81–96.

    Article  ADS  Google Scholar 

  • Colbeck, S.C, Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., Mc. Clung, D. and Morris, E. (1990) The International Classification for Seasonal Snow on the Ground, Int. Comm. Snow and Ice (IAHS), World Data Center A for Glaciology, U. of Colorado, Boulder, CO, USA.

    Google Scholar 

  • Comiso, J.C. (1994) Surface temperatures in the polar regions from Nimbus 7 Temperature Humidity Infrared Radiometer, J. Geophys. Res., 99(C3), pp. 5181–5200.

    Article  ADS  Google Scholar 

  • Dedieu, J.P. and Elizechea E. (1988) Surveillance satellitaire des surfaces englacees et enneigées dans les Alpes francaises par mesures de reflectances visibles et proche infrarouge issues des capteurs SPOT et Landsat Thematic Mapper, In. W.O. Proc. 4th International Colloquium on Spectral Signatures of Objets in Remote Sensing, pp. 371–375.

    Google Scholar 

  • De Haan, J.F., Bosma, P.B. and Hovenier, J.W. (1987) The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., 183, pp. 371–391.

    ADS  Google Scholar 

  • Deschamps, P.Y., Breon, F.M., Bricaud, A., Buriez, J.C, Deuze, J.L., Herman, M., Leroy, M., Podaire, A. and Seze, G. (1995) The POLDER mission: instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sens., in press.

    Google Scholar 

  • Dozier, J. (1984) Snow reflectance from Landsat 4 Thematic Mapper, IEEE Trans. Geosci. Remote Sens., GE22, pp. 323–328.

    Article  ADS  Google Scholar 

  • Dozier, J. and Warren, S.G. (1982) Effect of viewing angle on the infrared brightness temperature of snow, Water Resourc. Res., 18(5), pp. 1424–1434.

    Article  ADS  Google Scholar 

  • Dozier, J. (1989) Spectral signature of Alpine Snow cover from the Landsat Thematic Mapper, Remote Sens. Environ., 28, pp. 9–22.

    Article  Google Scholar 

  • Dowdeswell, J.A. and Me Intyre, N.F. (1987) The surface topography of large ice masses from Landsat imagery, J. Glaciol., 33, pp. 16–23.

    ADS  Google Scholar 

  • Duguay, C.R. and Le Drew, E.F. (1992) Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain, Photogrammetric Engineering and Remote Sensing, 58(5), pp. 551–558.

    ADS  Google Scholar 

  • Dutton, E.G., Stone, R.S. and De Luisi, J.J. (1989) South Pole surface radiation balance measurements, April 1986 to February 1988, NOAA Data Rep. ERL.-ARL-17. Natl. Oceanic and Atmos. Adm., Washington, D.C., (Available from NOAA Air Resources Laboratory Silver Spring, Maryland).

    Google Scholar 

  • Egan, W.G., Johnson, W.R. and Whitehead, V.S. (1991) Terrestrial polarization imagery obtained from the Space Shuttle. Characterization and interpretation, Appl. Optics, 30, pp. 435–442.

    Article  ADS  Google Scholar 

  • Goloub, P., Herman, M., Deuze, J.L. and Frouin, R. (1992) Contrast between polarization properties of snow-ice and clouds,Antarct. J. USA, 27(5), pp. 199–201.

    Google Scholar 

  • Good, W. (1989) Laboratory techniques for the characterisation of snow structures, ESA SP, 302, pp. 147–151.

    ADS  Google Scholar 

  • Grenfell, T.C. (1992) A radiative transfer model for sea ice with vertical structure variations, J. Geophys. Res., 96, pp. 16 991–17001.

    ADS  Google Scholar 

  • Grenfell, T.C. and Perovich, D.K. (1981) Radiation absorption coefficients of poly-cristaline ice from 400 to 1400 nm, J. Geophys. Res., 86, pp. 7447–7450.

    Article  ADS  Google Scholar 

  • Grenfell, T.C, Warren, S.G. and Mullen, P.C. (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 99(D9), pp. 18 669–18 684.

    Google Scholar 

  • Haefliger, M., Steffen, K. and Fowler, C. (1993) AVHRR surface temperature and narrowband albedo comparison with ground measurements for the Greenland ice sheet, Annals of Glaciology, 17, pp. 49–54.

    ADS  Google Scholar 

  • Hall, D.K. and Martinec, J. (1985) Remote Sensing of Ice and Snow. Chapman and Hall.

    Google Scholar 

  • Hall, D.K., Kovalick, W.M. and Chang, A.T.C. (1990) Satellite-derived reflectance of snow-covered surfaces in Northern Minnesota, Remote Sens. Environ., 33, pp. 87–96.

    Article  Google Scholar 

  • Hall, D.K., Foster, J.L. and Chang, A.T.C. (1992) Reflectance of snow as measured in situ and from space in Sub-Arctic areas in Canada and Alaska, IEEE Trans. Geosci Remote Sens., 30(3), pp. 634–637.

    Article  ADS  Google Scholar 

  • Hansen, J.E. and Hovenier, J.W. (1971) The doubling-adding method applied to multiple scattering of polarized light, J. Quant. Spectrosc. Radiative Transfer, 11, pp. 809–812.

    Article  ADS  Google Scholar 

  • Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge, University Press.

    Google Scholar 

  • Hess, M. and Wiegner, M. (1994) COP: a data library of optical properties of hexagonal ice crystals, Applied Optics, 33(33), pp. 7740–7746.

    Article  ADS  Google Scholar 

  • Kergomard, C, Bonnel, B. and Fouquart, Y. (1993) Retrieval of surface radiative fluxes on the marginal zone of sea ice from operational satellite data, Annals of Glaciology, 17, pp. 201–206.

    ADS  Google Scholar 

  • Key, J. and Haefliger, M. (1992) Arctic ice surface temperature retrieval from AVHRR thermal channels, J. Geophys. Res., 97(D5), pp. 5885–5893.

    Article  ADS  Google Scholar 

  • Kou, L., Labrie, D. and Chylek, P. (1993) Refractive indices of water and ice in the 0.65 to 2.5 μm spectral range, Appl. Optics., 32, pp. 3531–3540.

    Article  ADS  Google Scholar 

  • Kneizys, F.X., Shettle, E.P., Abreu, L.W., Chetwynd, J.H., Anderson, G.P., Gallery, W.O., Selby, J.E.A. and Clough, S.A. (1988), Users guide to LOWTRAN-7), Air force Geophysics Laboratory, publication AFGL-TR-880177.

    Google Scholar 

  • LaChapelle, E.R. (1969) Field guide to snow crystals). University of Washington Press, Seattle.

    Google Scholar 

  • Lenoble, J. (editor) (1985) Radiative transfer in scattering and absorbing atmospheres: standard computational procedures A. Deepak Pub., Hampton, Va, USA, 300 p.

    Google Scholar 

  • Li, S. (1982) A model for the anisotropic reflectance of pure snow, M.S. Thesis, U. California, 60 p.

    Google Scholar 

  • Lucas, R.M. and Harrison, A.R. (1990) Snow Observation by Satellite. A Review. Remote Sens. Reviews, 4(2), pp. 285–348.

    Article  Google Scholar 

  • Lucchita, B.K. and Ferguson, H.M. (1986) Antarctica: measuring glacier velocityfrom satellite images, Science, 234(4780), pp. 1105–1108.

    Article  ADS  Google Scholar 

  • Matson, M. (1991) NOAA satellite snow cover data, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 90, pp. 213–218.

    Google Scholar 

  • Mätzler, C. (1996) Microwave properties of ice and snow, this issue

    Google Scholar 

  • Middleton, W.E.K. and Mungall, A.G. (1952) The luminous directional reflectance of snow, J. Opt. Soc. Amer., 42, pp. 572–579.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I. (1992) Polarization characteristics of the coherent backscatter opposition effect, Earth, Moon, and Planets, 58, pp. 127–144.

    Article  ADS  Google Scholar 

  • O’Brien, H.W. and Munis, R.H. (1975) Red and near-infrared spectral reflectance of snow, CRREL Res. Rep., 332.

    Google Scholar 

  • Orheim, O. and Lucchita, B.K. (1987) Snow and ice studies by Thematic Mapper and multispectral scanner Landsat images, Annals of Glaciology, 9, pp. 109–118.

    ADS  Google Scholar 

  • Orheim, O. and Lucchita, B.K. (1988) Numerical analysis of Landsat Thematic Mapper images of Antarctica: surface temperatures and physical properties, Annals of Glaciology, 11, pp. 109–120.

    ADS  Google Scholar 

  • Paul, A. and Cooper, R. (1994) A simple shape-from-shading algorithm applied to images of ice-covered terrain, IEEE Trans. Geosci. Remote Sens., 326, pp. 1196–1198.

    Article  Google Scholar 

  • Perovich, D.K. and Govoni, J.W. (1991) Absorption coefficients of ice from 250 to 400 nm, Geophys. Res. Lett., 18, pp. 1233–1235.

    Article  ADS  Google Scholar 

  • Proy, C., Tanre, D. and Deschamps, P.Y. (1989) Evaluation of topographic effects in remotely sensed data, Remote Sens. Environ., 30, pp. 21–32.

    Article  Google Scholar 

  • Ropelewski, C.F. (1991), Real-time monitoring of global snow cover, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 90, pp. 225–229.

    Google Scholar 

  • Rott, H. and Markl, G. (1989) Improved Snow and Glacier Monitoring by the Landsat Thematic Mapper, ESA SP, 1102, pp. 3–12.

    Google Scholar 

  • Salisbury, J.W., D’Aria, D.M. and Wald, A. (1994) Measurements of the thermal infrared spectral reflectance of frost, snow, and ice, J. Geophys. Res., 99(B12), pp. 24235–24240.

    Article  ADS  Google Scholar 

  • Seko, K., Furukawa, T., Nishio, F. and Watanabe, O. (1993) Undulating topography on the Antarctic ice sheet revealed by NOAA AVHRR images, Annals of Glaciology, 17, pp. 55–62.

    ADS  Google Scholar 

  • Sergent, C, Pougatch, E., Sudul, M. and Bourdelles, B. (1993) Experimental investigation of optical properties for various types of snow, Annals of Glaciology, 17, pp. 281–287.

    ADS  Google Scholar 

  • Sherjal, I. and Fily, M. (1994) Temporal variations of microwave brightness temperatures over Antarctica, Annals of Glaciology, 20, pp. 19–25.

    Article  ADS  Google Scholar 

  • Stamnes, K., Tsay, S., Wiscombe, W. and Jayaweera, K. (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, pp. 2502–2509.

    Article  ADS  Google Scholar 

  • Steffen, K. (1987) Bidirectionnal reflectance of snow at 500-600 nm, in Large Scale Effects of Seasonal Snow Cover (ed. by Goodison), IAHS, 166, pp. 415–425.

    Google Scholar 

  • Stephenson, S.N. and Zwally, H.J. (1989) Ice-shelf topography and structure determined using satellite-radar altimetry and Landsat imagery, Annals of Glaciology, 12, pp. 162–169.

    ADS  Google Scholar 

  • Surdyk, S. and Fily, M. (1995) Results of a stratified snow emissivity model based on the wave approach: Application to the Antarctic ice sheet, J. Geophys. Res., 100 C5, pp. 8837–8848.

    Article  ADS  Google Scholar 

  • Takano Y. and Jayaweera K. (1985) Scattering phase matrix for hexagonal ice crystals computed from ray optics, Applied Optics, 24(19), pp. 3254–3263.

    Article  ADS  Google Scholar 

  • Tanre D., Deroo, C, Duhaut, P., Herman, M., Morcrette, J.J., Perbos, J. and Deschamps, P.Y. (1986) Simulation of the Satellite Signal in the Solar Spectrum, 115 p., Laboratoire d’Optique Atmosphérique, 59655 Villeneuve d’Asq Cedex, France.

    Google Scholar 

  • Taylor, V.R. and Stowe, L.L. (1984) Reflectance characteristics of uniform earth and cloud surfaces derived from Nimbus 7-ERBE, /. Geophys. Res., 89, pp. 4987–4996.

    Article  ADS  Google Scholar 

  • Verbiscer, A.J. and Veverka, J. (1990) Scattering properties of natural snow and frost: comparison with icy satellite photometry, Icarus, 88, pp. 418–429.

    Article  ADS  Google Scholar 

  • Verbiscer, A.J. and Helfenstein, P. (1996) Reflectance spectroscopy of icy surfaces, this issue.

    Google Scholar 

  • Warren, S.G. and Wiscombe, W.J. (1980) A model for the spectral albedo of snow II, snow containing atmospheric aerosols, J. Atmos. sci., 37, pp. 2734–2745.

    Article  ADS  Google Scholar 

  • Warren, S.G. (1982) Optical properties of snow, Rev. of geophys. and space phys., 20(1), pp. 67–89.

    Article  MathSciNet  ADS  Google Scholar 

  • Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave, Appl. Optics, 23(8), pp. 1206–1255.

    Article  ADS  Google Scholar 

  • Wendler, G. and Kelley, J. (1988) On the albedo of snow in Antarctica: contribution to I.A.G.O., J. Glaciol., 34, pp. 19–25.

    ADS  Google Scholar 

  • West, R., Tsang, L. and Winebrenner, D.P. (1993) Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes. IEEE Trans. Geosci. Remote Sens., 31, pp. 426–437.

    Article  ADS  Google Scholar 

  • Williams, R.S. and Ferrigno, J.G. (1993) Satellite image atlas of glaciers of the world, Glaciers of Europe, USGS professionnal paper, 1386-E, 164 p.

    Google Scholar 

  • Winther, J.G. (1993) Studies of snow surface characteristics by Landsat TM in Dronning Maud Land, Antarctica, Annals of Glaciology, 17, pp. 27–34.

    ADS  Google Scholar 

  • Wiscombe, W.J. and Warren, S.G. (1980) A model for the spectral albedo of snow I: Pure snow, J. Atmos. sci., 37, pp. 2712–2733.

    Article  ADS  Google Scholar 

  • World Climate Research Programme (1986) A preliminary cloudless standard atmosphere for radiation computation. Prepared by the Radiation Commission of the International Association for Meteorology and Atmospheric Physics, WCP-112, WMO/TD, 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fily, M., Leroux, C., Lenoble, J., Sergent, C. (1998). Terrestrial Snow Studies from Remote Sensing in the Solar Spectrum and the Thermal Infrared. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics