Advertisement

Origin and Evolution of Comets, Icy Planets and Satellites

  • O. Forni
  • C. Federico
  • A. Coradini
  • G. Magni
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

We review the formation and evolution of the icy objects that can be found in the solar system (comets, icy planets and satellites). We examine the physical processes that, starting from the dust particles present in the primitive solar nebula, can lead to the formation of the primary icy objects. We see how these objects can form and explain the present distribution and dynamical characteristics of the comets and icy planets. We examine the formation of the regular satellites of the giant planets focusing on the disk phase. Using 3D simulations of the final stage of giant planet formation, very stable prograde rotation accretion disks are obtained, having masses comparable to the regular satellites masses. Finally, we will examine their subsequent evolution trying to emphasize what are the most important physical processes that can explain their great variety. In particular, we examine the dynamics of a fully differentiated large icy satellite in presence of phase transitions. We conclude that melting inside the satellites is likely and may explain the observed activity of a satellite like Titan.

Keywords

Accretion Disk Giant Planet Solar Nebula Gravitational Instability Regular Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, F.C., Ruben, S.P., and Shu F.H. (1989) Eccentric gravitational instabilities in early Keplerian disks, Astrophys. J., 347, pp. 959–975.ADSCrossRefGoogle Scholar
  2. Bailey, M.E. (1987) The formation of comets in wind-driven shells around protostars, Icarus, 69, pp. 70–82.ADSCrossRefGoogle Scholar
  3. Bailey, M.E. and Stagg, C.R. (1990) The origin of short-period comets, Icarus, 86, pp. 2–8.ADSCrossRefGoogle Scholar
  4. Balbus, S.A. and Hawley, J.F. (1991) A periodic local shear instability in weakly magnetized disks. I. linear analysis, Astrophys. J., 376, pp. 214–222.ADSCrossRefGoogle Scholar
  5. Banfield D. and Murray N. (1992) A Dynamical History of the Inner Neptunian Satellites, Icarus, 99, pp. 390–401.ADSCrossRefGoogle Scholar
  6. Bercovici, D., Schubert, G. and Reynolds, R.T. (1986) Phase transitions and convection in icy satellites, Geophys. Res. Lett., 13, pp. 448–451.ADSCrossRefGoogle Scholar
  7. Boss, A.P. (1989) Evolution of the solar nebula. I. Nonaxisymmetric structure during nebula formation, Astrophys. J., 345, pp. 554–571.ADSCrossRefGoogle Scholar
  8. Boss, A.P. (1990) 3D solar nebula models: implications for Earth origin. In: Origin of the Earth, H.E. Newson and J.H. Jones (eds.), Oxford Univ. Press, New-York, pp. 3–15.Google Scholar
  9. Boss, A.P. (1993) Evolution of the solar nebula. II. Thermal structure during nebula formation, Astrophys. J.,417, pp. 351–367.ADSCrossRefGoogle Scholar
  10. Cabot, W., Canuto, V.M., Hubickyj, O. and Pollack, J.B. (1987a) The role of turbulent convection in the primitive solar nebula. I. Theory, Icarus, 69, pp. 387–422.ADSCrossRefGoogle Scholar
  11. Cabot, W., Canuto, V.M., Hubickyj, O. and Pollack, J.B. (1987b) The role of turbulent convection in the primitive solar nebula. II. Results, Icarus, 69, pp. 423–457.ADSCrossRefGoogle Scholar
  12. Cabot, W. and Pollack, J.B. (1992) Direct numerical simulations of turbulent convection. II. Variable gravity and differential rotation, Geophys. Astrophys. Fluid Dyn., 54, pp. 97–133.ADSCrossRefGoogle Scholar
  13. Cameron, A. G. W. (1978a) Physics of the primitive solar accretion disk, Moon and Planets, 18, pp. 5–40.ADSCrossRefGoogle Scholar
  14. Cameron, A. G. W. (1978b) Physics of the primitive solar nebula and of giant gaseous protoplanets, in Protostars and Planets, T. Gehreis (ed.), The University of Arizona Press, Tucson, pp. 453–487.Google Scholar
  15. Cameron, A. G. W. (1995) The first ten million years in the solar nebula, Meteoritics, 30, pp. 133–161.ADSGoogle Scholar
  16. Canuto, V. M., Goldman, I. and Hubickyj, O. (1984) A formula for the Shakura-Sunyaev turbulent viscosity parameter, Astrophys. J., 280, pp. L55–L58.ADSCrossRefGoogle Scholar
  17. Cassen, P.M. (1994) Utilitarian models of the solar nebula, Icarus, 112, pp. 405–429.ADSCrossRefGoogle Scholar
  18. Cassen, P.M., Smith, B.F., Miller, R.H. and Reynolds, R.T. (1981) Numerical experiments on the stability of preplanetary disks, Icarus, 48, pp. 377–392.ADSCrossRefGoogle Scholar
  19. Cassen, P.M., Peale, S.J. and Reynolds, R.T. (1982) Structural and thermal evolution of the Galilean satellites. In Satellites of Jupiter, D. Morrison (ed.), pp. 93–128. The University of Arizona Press, Tucson.Google Scholar
  20. Chokshi, A., Tielens. A.G.G.M. and Hollenbach, D. (1993) Dust coagulation, Astrophys. J., 407, pp. 807–819.ADSCrossRefGoogle Scholar
  21. Christensen, U.R. and Yuen, D. (1984) Layered convection induced by phase transition, J. Geophys. Res., 89, pp. 4389–4402.ADSCrossRefGoogle Scholar
  22. Christensen, U.R. and Yuen, D. (1985) Layered convection induced by phase transition, J. Geophys. Res., 90, pp. 10291–10300.ADSCrossRefGoogle Scholar
  23. Consolmagno, G.J. (1975) Thermal history models of icy satellites, M.S. Thesis, M.I.T. Cambridge, MA.Google Scholar
  24. Consolmagno, G.J. and Lewis, J.S. (1976) Structural and thermal models of icy Galilean satellites. In Jupiter, T. Gehreis (ed.), pp. 117–158. The University of Arizona Press, Tucson.Google Scholar
  25. Consolmagno, G.J. and Lewis, J.S. (1977) Preliminary thermal history models of the icy satellites. In: Planetary satellites, J. A. Burns (ed.), pp. 492–500. The University of Arizona Press, Tucson.Google Scholar
  26. Consolmagno, G.J. and Lewis, J.S. (1978) The evolution of the icy satellite interiors and surface, Icarus, 34, pp. 280–293.ADSCrossRefGoogle Scholar
  27. Coradini, A. and Magni, G. (1984) Structure of the satellitary accretion disk of Saturn, Icarus, 59, pp. 376–391.ADSCrossRefGoogle Scholar
  28. Coradini, A., Magni, G. and Federico, C. (1980) Time evolution of grains in the protosolar nebula, Moon and Planets, 22, pp. 47–61.ADSCrossRefGoogle Scholar
  29. Coradini, A., Federico, C. and Magni, G. (1981a) Formation of planetesimals in an evolving protoplanetary disk, Astron. Astrophys., 98, pp. 173–185.ADSzbMATHGoogle Scholar
  30. Coradini, A., Federico, C. and Magni, G. (1981b) Gravitational instabilities in satellite disks and formation of regular satellites, Astron. Astrophys., 99, pp. 255–261.ADSGoogle Scholar
  31. Coradini, A., Federico, C. and Lanciano, P. (1982) Ganymede and Callisto: accumulation heat content. In The comparative study of the planets, A. Coradini and M. Fulchignoni (eds.), pp. 61–70. D. Reidel, Dordrecht.CrossRefGoogle Scholar
  32. Coradini, A., Cerroni, P., Magni, G. and Federico, C. (1989) Formation of the satellites of the outer Solar System: sources of their atmospheres. In Origin and evolution of planetary and satellite atmospheres, S.K. Atreya, J. B. Pollack and M.S. Matthews (eds.), pp. 723–762. The University of Arizona Press, Tucson.Google Scholar
  33. Coradini, A., Federico, C, Forni, O. and Magni, G. (1995) Origin and thermal evolution of icy satellites, Surv. Geophys., 16, pp. 533–591.ADSCrossRefGoogle Scholar
  34. Cuzzi, J.N., Dobrovoloskis, A.R. and Champney, J.N. (1993) Particle-gas dynamics in the midplane of a protoplanetary nebula, Icarus, 106, pp. 102–134.ADSCrossRefGoogle Scholar
  35. Dubrulle, B. (1993) Differential rotation as a source of angular momentum transfer in the solar nebula, Icarus, 106, pp. 59–76.ADSCrossRefGoogle Scholar
  36. Dubrulle, B., Morfill, G. and Sterzik, M. (1995) The dust subdisk in the protoplanetary nebula, Icarus, 114, pp. 237–246.ADSCrossRefGoogle Scholar
  37. Duncan, M., Quinn, T. and Tremaine, S. (1988) The origin of short-period comets, As-trophys. J., 328, pp. L69–L73.ADSCrossRefGoogle Scholar
  38. Durham, W.B., Heard, H.C., Kirby, S.H. (1983) Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: preliminary results, J. Geophys. Res.,88, pp. 377–392.ADSCrossRefGoogle Scholar
  39. Durham, W.B., Kirby, S.H. Heard, H.C. and Stern, L.A. (1987) Inelastic properties of several high pressure crystalline phases of H2O: ices II, III and V. J. Phys., 48, pp. C1–221–C1–226.CrossRefGoogle Scholar
  40. Durham, W.B., Kirby, S.H. and Stern, L.A. (1992) Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 97, pp. 20883–20897.ADSCrossRefGoogle Scholar
  41. Ellsworth, K. and Schubert, G. (1983) Saturns icy satellites: thermal and structural models, Icarus, 54, pp. 490–510.ADSCrossRefGoogle Scholar
  42. Federico, C. and Lanciano, P. (1983) Thermal and structural evolution of four stellites of Saturn, Annales Geophysicae, 1, pp. 469–476.ADSGoogle Scholar
  43. Fernandez, J.A. (1980) On the existence of a comet belt beyond Neptune, Mon. Not. R. Astron. Soc, 192, pp. 481–491.ADSGoogle Scholar
  44. Fernandez, J.A. and Ip, W.-H. (1981) Dynamical evolution of a cometary swarm in the outer planetary region, Icarus, 47, pp. 470–479.ADSCrossRefGoogle Scholar
  45. Fernandez, J.A. and Ip, W.-H. (1983) Dynamical origin of the short-period comets. In: Asteroids, Comets, Meteors, C.-I Lagerkvist and H. Rickman (eds), pp. 387–390. Uppsala Univ. Press, Uppsala.Google Scholar
  46. Fischer, H.J. and Spohn, T. (1990) Thermal-orbital histories of viscoelastic models of Io (Jl), Icarus, 83, pp. 39–65.ADSCrossRefGoogle Scholar
  47. Forni O., Federico, C. and Coradini, A. (1992): Compressible convection with phase transitions in Ganymede and Callisto, Bull. Am. Astron. Soc, 28, p. 992.Google Scholar
  48. Friedson, A.J. and Stevenson, D.J.: 1983, Viscosity of rock-ice mixture and application to the evolution of icy satellites, Icarus, 56, 1–14.ADSCrossRefGoogle Scholar
  49. Goldreich, P. and Ward, W. A. (1973) The formation of planetesimals, Astrophys. J., 183, pp. 1051–1061.ADSCrossRefGoogle Scholar
  50. Goldreich, P. and Tremaine S. (1980) Disk-satellite interactions, Astrophys. J., 241, pp. 425–441.MathSciNetADSCrossRefGoogle Scholar
  51. Goldreich, P., Murray, N., Longaretti, P.Y. and Banfield, D. (1989) Neptune’s story, Science, 245, pp. 500–504.ADSCrossRefGoogle Scholar
  52. Greenzweig, Y. and Lissauer, J. J. (1990) Accretion rates of protoplanets, Icarus, 87, pp. 40–77.ADSCrossRefGoogle Scholar
  53. Harris, A. W. and Kaula, W. M. (1975) A co-accretional model of satellite formation, Icarus, 24, pp. 516–524.ADSCrossRefGoogle Scholar
  54. Harris, A.W. (1978) The formation of the outer planets, Lunar Planet. sci., IX, pp. 459–461.Google Scholar
  55. Hayashi, C. (1981) Structure of the solar nebula growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, Suppl. Prog. Theor. Phys., 70, pp. 35–53.ADSCrossRefGoogle Scholar
  56. Hillier, J. and Squyres S.W. (1991) Thermal stress tectonics on the satelittes of Saturn and Uranus, J. Geophys. Res., E96, pp. 15665–15674.ADSCrossRefGoogle Scholar
  57. Hills, J.G. (1982) The formation of comets by radiation pressure in the outer protosun, Astron. J., 87, pp. 907–910.ADSCrossRefGoogle Scholar
  58. Hills, J.G. and Sandford, M.T. II. (1983) The formation of comets by radiation pressure in the outer protosun: II. Dependence on the radiation-grain coupling. Astron. j., 88, pp. 1519–1521.ADSCrossRefGoogle Scholar
  59. Huaux, A. (1951) Sur un modèle de satellite en glace. Bull. Acad. Roy. sci. Belg., 37, pp. 534–539.Google Scholar
  60. Ip, W.-H. and Fernandez J.A. (1991) Steady-state injection of short-period comets from the tans-neptunian cometary belt, Icarus, 92, pp. 185–193.ADSCrossRefGoogle Scholar
  61. Ipatov, S.I. (1987) Accumulation and migration of the bodies from the zone of giant planets, Earth, Moon and Planets, 39, pp. 101–128.ADSCrossRefGoogle Scholar
  62. Jarvis, G.T. and Mc Kenzie, D.P. (1980) Convection in a compressible fluid with infinite Prandtl number, J.Fluid.Mech., 96, pp. 515–583.MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. Kirby, S.H., Durham, W.B., and Heard, H.C. (1985) Rheologies of H2O ices I, II and III at high pressures: a progress report. In Ices in the Solar System, J. Klinger, and D. Benest, (eds.), pp. 89–107. D. Reidel, Dordrecht.CrossRefGoogle Scholar
  64. Kirk, R.L. and Stevenson, D.J. (1987) Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 69, pp. 91–134.ADSCrossRefGoogle Scholar
  65. Konigl, A. (1989) Self-similar models of magnetized accretion disks, Astrophys. J., 342, pp. 208–233.ADSCrossRefGoogle Scholar
  66. Korycansky, D. G., Bodenheimer, P. and Pollack, J.B. (1991) Numerical models of giant planet formation with rotation, Icarus, 92, pp. 234–251.ADSCrossRefGoogle Scholar
  67. Kuiper, G.P. (1951) On the origin of the solar system. In: Astrophysics, J.A. Hynek (ed), pp. 357–424. McGraw-Hill, New-York.Google Scholar
  68. Kuramoto, K. and Matsui, T. (1994) Formation of a hotproto-atmosphere on the accreting giant icy satellites: implications for the origin and evolution of Titan, Ganymede and Callisto, J. Geophys. Res., 99(E10), pp. 21183–21200.ADSCrossRefGoogle Scholar
  69. Larson, R.B. (1989) The evolution of protostellar disks. In The Formation and Evolution of Planetary Systems, H.A. Weaver and L. Danly (eds), pp. 31–54. Cambridge Univ. Press, Cambridge.Google Scholar
  70. Levy, E.H. and Lunine J.I. (eds) (1993) Protostars and planets III, 1596 pp. The University of Arizona Press, Tucson.Google Scholar
  71. Lewis, J.S. (1971a) Satellites of the outer planets: their physical and chemical nature, Icarus, 15, pp. 174–185.ADSCrossRefGoogle Scholar
  72. Lewis, J.S. (1971b) Satellites of the outer planets: thermal models, Science, 172, pp. 1127–1128.ADSCrossRefGoogle Scholar
  73. Lin D.N.C. and Papaloizon J. (1979) Tidal torques on accretion disks in binary systems with extreme mass ratios, Mon. Not. R. Astron. Soc, 186, pp. 799–812.ADSzbMATHGoogle Scholar
  74. Lin D.N.C. and Papaloizou J. (1980) On the structure and evolution of the primordial solar nebula, Mon. Not. R. Astron. Soc, 191, pp. 37–48.ADSGoogle Scholar
  75. Lin D.N.C. and Pringle J.E. (1987) A viscosity prescription for a self gravitating accretion disk, Mon. Not. R. Astron. Soc, 225, pp. 607–613.ADSGoogle Scholar
  76. Lin D.N.C. and Pringle J.E. (1990) The formation and initial evolution of protostellar disks, Astrophys. J., 358, pp. 515–524.ADSCrossRefGoogle Scholar
  77. Lissauer, J. J. (1987) Timescales for planetary accretion and the structure of the protoplanetary disk, Icarus, 69, pp. 249–265.ADSCrossRefGoogle Scholar
  78. Lissauer, J. J. (1993) Planet formation, Ann. Rev. Astron. Astrophys., 31, pp. 129–174.ADSCrossRefGoogle Scholar
  79. Lissauer, J. J. and Stewart G.R. (1993) Growth of planets from planetesimals. In Protostars and planets III, D.C. Black and M.S. Matthews (eds),pp. 1061–1088. The University of Arizona Press, Tucson.Google Scholar
  80. Lovelace, R.V.E., Berk, H.L. and Contopolous J. (1990) Magnetized driven jets and wind, Astrophys. J., 359, pp. 696–705.Google Scholar
  81. Lunine, J.I. and Stevenson, D.J. (1982) Formation of Galilean satellites in a gaseous nebula, Icarus, 52, pp. 14–39.ADSCrossRefGoogle Scholar
  82. Lunine, J.I., Atreya, S.K. and Pollack, J.B. (1989) Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto. In: Origin and evolution of planetary and satellite atmospheres, S.K. Atreya, J. B. Pollack and M.S. Matthews (eds.), pp. 605–665. The University of Arizona Press, Tucson.Google Scholar
  83. Lunine, J.I. and Tittemore W.C. (1993) Origin of outer-planet satellites. In: Protostars and planets III, D.C. Black and M.S. Matthews (eds.), pp. 1149–1176. The University of Arizona Press, Tucson.Google Scholar
  84. Lynden-Bell, D. and Pringle, F. E. (1974) Evolution of viscous disks and the origin of nebular variables, Mon. Not. R. Astron. Soc, 68, pp. 603–637.ADSGoogle Scholar
  85. Machetel, P. and Weber, P. (1991) Intermittent layered converting in a model mantle with an endothermic phase change at 670 km, Nature, 350, pp. 55–57.ADSCrossRefGoogle Scholar
  86. Magni, G., Coradini, A., Cerroni, P. and Federico, C. (1990) Origin of the satellite systems of the outer planets, Adv. Space Res., 10, pp. 145–158.ADSCrossRefGoogle Scholar
  87. Malhotra, R. (1991) Tidal origin of the Laplace resonance and the resurfacing of Ganymede, Icarus, 94, pp. 399–412.ADSCrossRefGoogle Scholar
  88. Marochnik, L.S., Mukhin, L.M and Sagdeev, R.Z. (1988) Estimates of mass and angular momentum in the Oort cloud, Science, 242, pp. 547–550.ADSCrossRefGoogle Scholar
  89. McKinnon, W.B. (1984) On the origin of Triton and Pluto, Nature, 311, pp. 355–358.ADSCrossRefGoogle Scholar
  90. McKinnon, W.B. (1989) Origin of Triton-Pluto binary, Astrophys. J., 344, pp. L41–L44.ADSCrossRefGoogle Scholar
  91. Morfill, G.E. (1988) Protoplanetary accretion disks with coagulation and evaporation, Icarus, 75, pp. 371–379.ADSCrossRefGoogle Scholar
  92. Mueller, S., and McKinnon, W.B. (1988) Three-layered models of Ganymede and Callisto: compositions, structures, and aspects of evolution, Icarus, 76, pp; 437–464.ADSCrossRefGoogle Scholar
  93. Mumma, M.J., Weissman, P.R. and Stern, S.A. (1993) Comets and the origin of the solar system: reading the Rosetta stone. In: Protostars and planets III, D.C. Black and M.S. Matthews (eds.), pp. 1177–1252. The University of Arizona Press, Tucson.Google Scholar
  94. Nakagawa, Y., Sekiya, M. and Hayashi C. (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula Icarus, 67, pp. 375–390.ADSCrossRefGoogle Scholar
  95. Ohtsuki, K., Ida, S. Nakagawa, Y. and Nakazawa, K. (1993) Planetary accretion in the solar gravitational field.In Protostars and planets III, D.C. Black and M.S. Matthews (eds.), pp. 1089–1107. The University of Arizona Press, Tucson.Google Scholar
  96. Ojakangas, G.W. and Stevenson, D.J (1986) Episodic volcanism of tidally heated satellites with application to lo, Icarus, 66, pp. 341–358.ADSCrossRefGoogle Scholar
  97. Oort, J.H. (1950) The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its structure, Bull. Astron. Inst. Netherlands, 11, pp. 91–110.ADSGoogle Scholar
  98. Peale, S.J. (1978) An observational test for the origin of the Titan-Hyperion orbital resonance, Icarus, 36, pp. 240–244.ADSCrossRefGoogle Scholar
  99. Peale, S.J., Cassen, P. and Reynolds, R.T. (1979) Melting of Io by tidal dissipation, Science, 203, pp. 892–894.ADSCrossRefGoogle Scholar
  100. Podolak, M., Hubbard, W.B. and Pollack, J.B. (1993) Gaseous accretion and the formation of giant planets. In: Protostars and planets III, D.C. Black and M.S. Matthews (eds.), pp. 1109–1147. The University of Arizona Press, Tucson.Google Scholar
  101. Poirier, J.P., Boloh, L., and Chambon: (1983) Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus, 55, pp. 218–230.ADSCrossRefGoogle Scholar
  102. Pollack, J. B. and Consolmagno, G. (1984) Origin and evolution of the Saturn system. In: Saturn, T. Gehrels and M.S. Matthews (eds.), pp. 811–866. The University of Arizona Press, Tucson.Google Scholar
  103. Pollack, J. B. and Bodenheimer, P. (1989) Theories of the origin and evolution of the giant planets. In: Origin and evolution of planetary and satellite atmospheres, S.K. Atreya, J.P. Pollack and M.S. Matthews (eds.), pp. 564–602. The University of Arizona Press, Tucson.Google Scholar
  104. Pollack, J. B., Podolak, M., Bodenheimer, P. and Christofferson, B. (1986) Planetesimals dissolution in the envelopes of the forming, giant planets, Icarus, 67, pp 409-443.Google Scholar
  105. Prinn, R. G. (1990) On the neglect of non-linear momentum terms in solar nebula accretion disk models, Astrophys. J., 348, pp. 725–729.ADSCrossRefGoogle Scholar
  106. Prinn, R. G. and Fegley, B.Jr (1981) Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae: implications for satellite composition, Astrophys. J., 249, pp 308-317.Google Scholar
  107. Prinn, R. G. and Fegley, B.Jr (1989) Solar nebula chemistry: origin of planetary, satellite, and cometary volatiles, In: Origin and evolution of planetary and satellite atmospheres, S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.), pp. 78–136. The University of Arizona Press, Tucson.Google Scholar
  108. Reynolds, R.T. and Cassen, P.M. (1979) On the internal structure of the major satellite of the outer planets, Geophys. Res. Letts., 6, pp. 121–129.ADSCrossRefGoogle Scholar
  109. Richter, F.M. (1973) Finite amplitude convection through a phase boundary, Geophys. J. R. Astron. Soc.,35, pp. 265–276.CrossRefGoogle Scholar
  110. Ross, M.N. and Schubert, G. (1987) Tidal heating in an internal ocean model of Europa, Nature, 325, pp. 133–134.ADSCrossRefGoogle Scholar
  111. Ross, M.N. and Schubert, G. (1989) Viscoelestic models of tidal heating in Enceladus, Icarus, 78, pp. 90–101.ADSCrossRefGoogle Scholar
  112. Ruden S.P. and Pollack, J.B. (1991) The dynamical evolution of the protosolar nebula, Astrophys. J., 375, pp. 740–760.ADSCrossRefGoogle Scholar
  113. Ruskol, E. L. (1960) Origin of the Moon I, Soviet Astronomy-AJ, 4, pp. 657–668.ADSGoogle Scholar
  114. Ruskol, E. L. (1963) Origin of the Moon II, Soviet Astronomy-AJ, 7, pp. 221–227.ADSGoogle Scholar
  115. Ruskol, E. L. (1972) Origin of the Moon III, Soviet Astronomy-AJ, 15, pp. 646–654.ADSGoogle Scholar
  116. Safronov, V. S. (1969) Evolution of the protoplanetary cloud and the formation of the Earth and the Planets, NASA TT-F-677, 206 p.Google Scholar
  117. Safronov, V. S. (1991) Kuiper prize lecture: some problems in the formation of the planets, Icarus, 94, pp. 260–271.ADSCrossRefGoogle Scholar
  118. Safronov, V. S. and Ruskol, E. L. (1982) On the origin and initial temperature of Jupiter and Saturn, Icarus, 49, pp. 284–296.ADSCrossRefGoogle Scholar
  119. Safronov, V. S., Pechernikova, G.V., Ruskol, E.L. and Vitjazev, A.V. (1986) Protosatellite swarms. In: Satellites, J.A. Burns and M.S. Matthews (eds.), pp. 89–116. The University of Arizona Press Tucson.Google Scholar
  120. Schubert, G., Yuen, D.A., and Turcotte, D.L. (1975) Role of phase transitions in a dynamic mantle, Geophys. J. Roy. Astron. Soc, 42, 705–735.Google Scholar
  121. Schubert, G., Stevenson, D.J. and Ellsworth, K. (1981) Internal structures of the Galilean satellites, Icarus, 47, pp. 46–59.ADSCrossRefGoogle Scholar
  122. Schubert, G., Spohn, T. and Reynolds, R.T. (1986) Thermal histories, compositions, and internal structures of the moons of the Solar System. In: Satellites, J.A. Burns and M. S. Matthews (eds.), pp. 224–292. The University of Arizona Press, Tucson.Google Scholar
  123. Segatz, M., Spohn, T., Ross, M.N. and Schubert, G. (1988) Tidal dissipation, surface heatflow, and figures of viscoelastic models of Io, Icarus, 75, pp. 187–206.ADSCrossRefGoogle Scholar
  124. Sekiya, M. (1983) Gravitational instability in a dust gas layer and formation of planetesimals in the Solar Nebula, Prog. Theor. Phys., 69, pp. 1116–1130.ADSCrossRefGoogle Scholar
  125. Shakura, N. I. and Sunyaev, R. A. (1973) Black holes in binary systems. Observational appearance, Astron. Astrophys., 24, pp. 337–355.ADSGoogle Scholar
  126. Singer, S. F. (1975) When and where were the satellites of Uranus formed, Icarus, 25, pp. 484–488.ADSCrossRefGoogle Scholar
  127. Slattery, W.L., Benz, W., and Cameron, A.G.W. (1992) Giant Impacts on a primitive Uranus, Icarus, 99, pp. 167–174.ADSCrossRefGoogle Scholar
  128. Sotin, C, Gillet, P. and Poirier, J.P. (1985) Creep of high-pressure ice VI. In Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus and R. Smoluchowski (eds.), pp 109–118. D. Reidel, Dordrecht.CrossRefGoogle Scholar
  129. Sotin, C. and Poirier, J.P. (1987) Viscosity of Ice V, J. Phys., 48, pp. C1–233–C1–238.CrossRefGoogle Scholar
  130. Sotin, C. and Parmentier, E.M. (1989) On the stability of a fluid layer containing a univariant phase transition: application to planetary interiors, Phys. Earth Planet. Int., 55, pp. 10–25.ADSCrossRefGoogle Scholar
  131. Spaute, D., Weidenschilling, S.J., Davis, D.R. and Marzari, F. (1991) Accretional evolution of a planetesimal swarm: 1. A new simulation, Icarus, 92, pp. 147–164.ADSCrossRefGoogle Scholar
  132. Spruit, H.C. (1987) Stationary shocks in accretion disks, Astron. Astrophys., 184, pp. 173–184.ADSzbMATHGoogle Scholar
  133. Squyres, S.W., Reynolds, R.T., Cassen, P.M., and Peale, S.J. (1983a) Liquid water and active resurfacing on Europa Nature, 301, pp. 225–226.ADSCrossRefGoogle Scholar
  134. Squyres, S.W., Reynolds, R.T., Cassen, P.M., and Peale, S.J.(1983b) The evolution of Enceladus, Icarus, 53, pp. 319–331.ADSCrossRefGoogle Scholar
  135. Squyres, S.W., Reynolds, R.T., Summers, A.L. and Shung, F. (1988) Accretional heating of the satellites of Saturn and Uranus, J. Geophys. Res., 93, pp. 8779–8794.ADSCrossRefGoogle Scholar
  136. Stagg, C.R. and Bailey, M.E. (1989) Stochastic capture of short-period comets, Mon. Not. R. Astrophys. Soc, 241, pp. 507–541.ADSGoogle Scholar
  137. Stern, S.A. (1991) On the number of planets in the outer solar system: evidence of a substantial population of 1000-km bodies, Icarus, 90, pp. 271–281.ADSCrossRefGoogle Scholar
  138. Stevenson, D.J., Harris, A.W. and Lunine, J.I. (1986) Origin of satellites. In: Satellites, J.A. Burns and M.S. Matthews (eds.), pp. 39–88. The University of Arizona Press, Tucson.Google Scholar
  139. Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A. and Schubert, G. (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earths mantle, Nature,361, pp. 699–704.ADSCrossRefGoogle Scholar
  140. Thurber, C.H., Hsui, A.T. and Toksöz, M.N. (1980) Thermal evolution of Ganymede and Callisto: effects of solid-state convection and constraints from Voyager imagery, Proc. Lunar Planet. sci. Conf., 11, pp. 1957–1977.ADSGoogle Scholar
  141. Tittemore, W.C. (1990a) Tidal heating of Ariel, Icarus, 87, pp. 110–139.ADSCrossRefGoogle Scholar
  142. Tittemore, W.C. (1990b) Chaotic motion of Europa and Ganymede and the Ganymede-Callisto dichotomy, Science, 250, pp. 263–267.ADSCrossRefGoogle Scholar
  143. Tittemore, W.C. and Wisdon J. (1990) Tidal evolution of the Uranian satellites. III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3 and Ariel-Umbriel 2:1 mean motion commensurabilities, Icarus, 85, pp. 394–443.ADSCrossRefGoogle Scholar
  144. Tomley, L., Cassen, P. and Steinman-Cameron (1991) On the evolution of gravitational unstable disks, Astrophys. J., 382, pp. 530–542.ADSCrossRefGoogle Scholar
  145. Tomley, L., Steinman-Cameron and Cassen, P. (1994) Further studies of gravitationally unstable protostellar disks, Astrophys. J., 422, pp. 850–861.ADSCrossRefGoogle Scholar
  146. Volk, H.J., Jones, F.C., Morfill, G.E. and Roser, S. (1980) Collisions between grains in a turbulent gas, Astron. Astrophys., 85, pp. 316–325.MathSciNetADSGoogle Scholar
  147. Ward, W.R. (1988) On disk-planet interactions and orbital eccentricities, Icarus, 73, pp. 330–348.ADSCrossRefGoogle Scholar
  148. Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula, Mon. Not. R. Astron. Soc, 180, pp. 57–70.ADSGoogle Scholar
  149. Weidenschilling, S. J. (1980) Dust to planetesimals: settling and coagulation in the solar nebula, Icarus, 44, pp. 172–189.ADSCrossRefGoogle Scholar
  150. Weidenschilling, S. J. (1984) Evolution of grains in a turbulent solar nebula, Icarus, 60, pp. 555–567.ADSCrossRefGoogle Scholar
  151. Weidenschilling, S. J. (1994) Origin of cometary nuclei as’ rubble piles’, Nature, 368, pp. 721–723.ADSCrossRefGoogle Scholar
  152. Weidenschilling, S. J. and Cuzzi, J.N. (1993) Formation of planetesimals in the solar nebula. In: Protostars and Planets III E.H. Levy and J.L. Lunine (eds), pp. 1031–1060. The University of Arizona Press, Tucson.Google Scholar
  153. Weissman. P.R. (1985) The origin of comets implications for planetary formation. In: Protostars and planets II, D.C. Black and M.S. Matthews Eds., pp. 895–919. The University of Arizona Press, Tucson.Google Scholar
  154. Weissman. P.R. (1990) The Oort cloud, Nature, 344, pp. 825–830.ADSCrossRefGoogle Scholar
  155. Weissman. P.R. (1991) The angular momemtum of the Oort cloud, Icarus, 89, pp. 190–193.ADSCrossRefGoogle Scholar
  156. Wetherill, G.W. (1989) The formation of the Solar system: consensus, alternatives, and missing factors, in The formation and evolution of planetary systems, H.A. Weaver and L. Danly Eds., pp. 1–30. Cambridge Univ. Press, Cambridge.Google Scholar
  157. Zuckerman, B., Forveille, T., and Kastner J.H. (1995) Inhibition of giant-planet formation by rapid gas depletion around young stars, Nature, 373, pp. 494–496.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • O. Forni
    • 1
  • C. Federico
    • 2
  • A. Coradini
    • 3
  • G. Magni
    • 3
  1. 1.Institut d’Astrophysique Spatiale, bât. 121Université Paris-XIOrsay-cedexFrance
  2. 2.Dipartimento di Scienze della TerraUniversità degli StudiPerugiaItaly
  3. 3.IAS-Reparto di PlanetologiaViale dell’Università, 11RomaItaly

Personalised recommendations