Advertisement

From Interstellar Dust to Comets: Distributed Co in Comet Halley

  • J. Mayo Greenberg
  • Aigen Li
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Some simple molecules in comet comae like CO, C2, C3, CN, H2CO, 3 + appear to be distributed in such a way that they are neither directly emitted from the nucleus surface nor created as daughter molecules from more complex gas phase species. The only remaining possible source is the organic component in comet dust. The requirements imposed on the comet dust grains by the distributed CO emission are that they be heated sufficiently to evaporate a large fraction of the more volatile fraction of the complex organic refractory molecules and that a large fraction of these contain CO groups. Approximating the size (mass) distribution of the comet dust by that derived for Comet Halley, and assuming that the refractory organics remaining on the silicate cores are the heating agent by solar radiation in fluffy aggregates of interstellar core-mantle particles, imposes a minimum dust porosity of 0.975 ≤ P ≤ 0.99. Such porosities are consistent with those required to account for the silicate and organic spectral emission by Comet Halley dust and imply comet nucleus densities of p < 0.3 gcm −3.

Keywords

Interstellar Medium Interstellar Dust Dust Mass Comet Dust Dust Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F., Hoban, S., Birch, P.V., Bowers, C, Martin, R. and Klinglessnith, D.A. (1986) Cyanogen jets in comet Halley, Nature, 324, p. 649.ADSCrossRefGoogle Scholar
  2. Bohren, C.F. and Huffman, D.R. (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York.Google Scholar
  3. Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, C.X. and Schutte, W. (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium, Origins of Life and Evolution of the Biosphere, 22, p. 287.ADSCrossRefGoogle Scholar
  4. Butchart, I., McFadzean, A.D., Whittet, D.C.B., Geballe, T.R. and Greenberg, J.M. (1986) Three micron spectroscopy of the galactic centre source IRS7 A& A, 154, p. L5.ADSGoogle Scholar
  5. Clairemidi, J., Moreels, G. and Krasnopolsky, V.A. (1990) Gaseous CN, C2 and C3 jets in the inner coma of comet P/Halley observed from the Vega 2 spacecraft, Icarus, 86, p. 115.ADSCrossRefGoogle Scholar
  6. Dorschner, J., Begemann, B., Henning, Th., Jäger, C. and Mutschke, H. (1995) Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition, A&A, 300, p. 503.Google Scholar
  7. Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lammerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H. and Illiano, J.M. (1987) The CO and N2 abundance in comet P/Halley, A& A, 187, p. 481.ADSGoogle Scholar
  8. Eberhardt, P., Reber, M., Krankowsky, D. and Hodges, R.R. (1995) The D/H and 18O/16O ratios in water from comet P/Halley, A& A, 302, p. 301.Google Scholar
  9. Finson, M.L. and Probstein, R.F. (1968) A theory of dust comets. I. Model and equations, ApJ, 154, p. 327.ADSCrossRefGoogle Scholar
  10. Gilmour, I. and Pillinger, C. (1985) Stable carbon isotopic analysis of sedimentary organic matter by stepped combustion, Org. Geochem., 8, p. 421.CrossRefGoogle Scholar
  11. Grady, M.M., Wright, I.P., Fallick, A.E. and Pillinger, C.T. (1983) The stable isotopic composition of carbon, nitrogen and hydrogen in some Yamato meteorites. Proc. 8th Symp. Antarctic Meteorites, p. 289.Google Scholar
  12. Greenberg, J.M. (1982a) Laboratory dust experiments — tracing the composition of cometary dust. In: Gombosi, T.J. (ed.) Cometary exploration II, Central Res. Inst., Hungarian Acad. Science, p. 23.Google Scholar
  13. Greenberg, J.M. (1982b) What are comets made of — a model based on interstellar dust. In: Wilkening, L. (ed.), Comets, Univ. of Arizona press, p. 131.Google Scholar
  14. Greenberg, J.M. (1982c) Dust in dense clouds: One stage in a cycle. In: Beckman, J.E. and Phillips, J.P. (eds), Submillimetre Wave Astronomy, Cambridge University Press, p. 261.Google Scholar
  15. Greenberg, J.M. (1989) The core-mantle model of interstellar grains and the cosmic dust connection. In: Allamandola, L.J. and Tielens, A.G.G.M. (eds.) Interstellar dust, Dordrecht, Reidel, p. 345.CrossRefGoogle Scholar
  16. Greenberg, J.M. and Hage, J.I. (1990) From interstellar dust to comets: a unification of observational constraints, ApJ, 361, p. 260.ADSCrossRefGoogle Scholar
  17. Greenberg, J.M., Singh, P.D. and de Almeida, A.A. (1993) What is new about the new comet Yamaka (1988r)? ApJ, 414, p. L45.ADSCrossRefGoogle Scholar
  18. Greenberg, J.M. and Mendoza-Gómez, C.X. (1993) Interstellar dust evolution: a reservoir of prebiotic molecules. In: Greenberg, J.M., Mendoza-Gómez, C.X. and Pirronello, V. (eds.), The chemistry of life’s origins, Dordrecht, Kluwer, p. 1.CrossRefGoogle Scholar
  19. Greenberg, J.M., Mendoza-Gómez, C.X., de Groot, M.S. and Breukers, R. (1993) Laboratory dust studies and gas-grain chemistry. In: Millar, T.J. and Williams, D.A. (eds.), Dust and chemistry in astronomy, IOP publ. Ltd., p. 265.Google Scholar
  20. Greenberg, J.M. and Shalabiea, O.M. (1994) Comets as a reflection of interstellar medium chemistry. In: Milani, A., di Marino, M. and Cellino, A. (eds.), Asteroids, comets, meteors, Kluwer, p. 327.Google Scholar
  21. Greenberg, J.M., Shalabiea, O.M., Mendoza-Gómez, C.X., Schutte, W. and Gerakines, P.A. (1995a) Origin of organic matter in the protosolar nebula and in comets, Adv. Space Res. 16, no. 2, p. 9.ADSCrossRefGoogle Scholar
  22. Greenberg, J.M., Li, A., Mendoza-Gómez, C.X., Schutte, W.A., Gerakines, P.A. and de Groot, M. (1995b) Approaching the interstellar grain organic refractory component, ApJ, 455, p. L177.Google Scholar
  23. Greenberg, J.M. and Li, A. (1996) What are the true astronomical silicates? A& A, 309, p. 258.ADSGoogle Scholar
  24. Kissel, J. and Krueger, F.R. (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1, Nature, 326, p. 755.ADSCrossRefGoogle Scholar
  25. Krueger, F.R. and Kissel, J. (1987) The chemical composition of the dust of comet P/Halley as measured by PUMA on board Vega 1, Naturwissenschaften, 74, p. 312.ADSCrossRefGoogle Scholar
  26. Maxwell-Garnett, J.C. (1904) Phil. Trans. R. Soc. London, 203A, p. 385.ADSGoogle Scholar
  27. McDonnell, J.A.M., Lamy, P.L. and Pankiewicz, G.S. (1991) Physical properties of cometary dust. In: Newburn, R.L., Neugebauer, M. and Rahe, J. (eds.), Comets in the Post-Halley era, Kluwer, Dordrecht, p. 1043.Google Scholar
  28. Meier, R., Eberhardt, P., Krankowsky, D. and Hodge, R.R. (1993) The extended formaldehyde source in comet P/Halley, A& A, 277, p. 677.ADSGoogle Scholar
  29. Mendoza Gomez, C.X. (1992) Complex irradiation products in the interstellar medium, PhD thesis, Leiden University.Google Scholar
  30. Mendoza-Gómez, C.X., de Groot, M. and Greenberg, J.M. (1995) The fate of polycyclic aromatic material in space, A& A, 295, p. 479.ADSGoogle Scholar
  31. Moreels, G., Clairemidi, J., Hermine, P., Brechignac, P. and Rousselot, P. (1994) Detection of a polycyclic aromatic molecule in comet P/Halley, A& A, 282, p. 643.ADSGoogle Scholar
  32. Mukhin, L.M., Dikov, Y.P., Evlanov, E.N., Fomenkova, M.N., Nazarov, M.A., Priludsky, O.F., Sagdeev, R.Z. and Zubkov, B.U. (1989) Possible composition of Halley comet dust (Si-poor particles) according to the data obtained by mass-spectrometer PUMA-2, Lunar Planetary Science Conf. XX, Houston, Texas, USA, p. 733.Google Scholar
  33. Mumma, M.J., Stern, S.A. & Weissman, P.R. (1993) Comets and the origin of the solar system: Reading the Rosetta stone. In: Levy, E.H., Lunine, J.I. and Matthews, M.S. (eds), Planets and Protostars III, Univ. of Arizona Press, Tucson, p. 1177.Google Scholar
  34. Pendieton, Y.J., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M. and Sellgren, K. (1994) Near-infrared absorption spectroscopy of interstellar hydrocarbon grains, ApJ, 437, p. 683.ADSCrossRefGoogle Scholar
  35. Rickman (1991) The thermal history and structure of cometary nuclei. In: Newburn, R.L., Neugebauer, M. and Rahe, J. (eds.), Comets in the Post-Halley era, Kluwer, Dordrecht, p. 733.Google Scholar
  36. Samarasinha, N.H. and Belton, M.J.S. (1994) The nature of the source of CO in comet P/Halley, Icarus, 108, p. 103.ADSCrossRefGoogle Scholar
  37. Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Sellgren, K., Tapia, M. and Pendleton, Y.J. (1991) The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium, ApJ, 371, p. 607.ADSCrossRefGoogle Scholar
  38. Vaisberg, O., Smirnov, V. and Omelchenko, A. (1986) Spatial distribution of low-mass dust particles (m<10−log) in comet Halley coma, 20th ESLAB Symposium, ESA SP-250, II, p. 17.Google Scholar
  39. Wyckoff, S., Tegler, S.C. and Engel, L. (1991) Ammonia abundances in four comets, ApJ, 368, p. 279.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • J. Mayo Greenberg
    • 1
  • Aigen Li
    • 1
  1. 1.Laboratory AstrophysicsUniversity of LeidenLeidenNetherlands

Personalised recommendations