Advertisement

Sputtering and Desorption from Icy Surfaces

  • R. E. Johnson
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

The data from the Pioneer and Voyager missions, the improvements in ground-based observations, and the recent Hubble Space Telescope observations have revolutionized our understanding of the outer solar system. Quite remarkably, a new area of physics has evolved based on the exploration of the outer solar system, the study of the sputtering of surfaces composed of low- temperature condensed gases. Sputtering of such materials is of interest because most of the small, icy objects in the outer solar system are exposed to a plasma (the solar plasma, a planetary magnetospheric plasma, or a local pick-up ion plasma) and the plasma bombardment leads to the efficient ejection of material from such surfaces (e.g. Johnson 1990, 1996)

Keywords

Excitation Density Galilean Satellite Outer Solar System Average Binding Energy Solid Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, H.H., Bay, H.L. (1981) Sputtering yield measurements. Behrisch R (ed) Sputtering by particle bombardment Springer, Berlin Heidelberg New York Tokyo, pp.145–218.CrossRefGoogle Scholar
  2. Bar-Nun, A. Herman, A.G., Rappaport, M.L., Yu Meckler (1985) Ejection of H2O, O2,H2 and H from water ice by 0.5–6 keV H+ and Ne+ ion bombardment. Surf. Sci., 150, pp. 143–156.ADSCrossRefGoogle Scholar
  3. Balaji, V., David, D.E., Tian, R., Michl, J., Urbassek, H.M. (1995) Nuclear sputtering of condensed diatonic molecules, J. Phys. Chem., 99, pp. 15565–15572.CrossRefGoogle Scholar
  4. Benit, J. and Brown, W.L. (1990) Sputtering of isotropically labelled H2O, Nucl. Instrum. Method B46, pp. 448–454.ADSGoogle Scholar
  5. Benit, J. Bibring, J.P., Rocard, F. (1988) Chemical irradiation effects in ices, Nucl. Instrum. Methods B32, pp. 349–353.ADSGoogle Scholar
  6. Benit, J., Bibring, J.P., Della-Negra, S., Le Beyec, Y., Mendenhall, M., Rocard, F., Standing, K. (1987) Erosion of ices by ion irradiation, Nucl. Instrum. Methods, B19/20, pp. 838–842.Google Scholar
  7. Betz, G. and Wehner, G.K. (1983) Sputtering by Particle Bombardment II. (ed. R. Berisch), Springer-Verlag, Berlin, pp. 11–90.CrossRefGoogle Scholar
  8. Boring, J.W., Johnson, R.E., Reimann, C.T., Garrett, J.W., Brown, W.L., Marcantonio, K.J. (1983), Ion-induced chemistry in condensed gas solids. Nucl. Instrum. Methods, 218, pp. 707–711.CrossRefGoogle Scholar
  9. Boring, J.W., Garrett, J.W., Cummings. T.A., Johnson, R.E., Brown, W.L. (1984a) Sputtering of solid SO2,Nucl. Instrum. Methods, Bl, pp. 321–326.ADSGoogle Scholar
  10. Boring, J.W., Garrett, J.W., Cummings, T.A., Johnson, R.E. Brown, W.L. (1984b) Ion-induced molecular ejection from D2O ice, Surf. Sci. 147, pp. 227–240.ADSCrossRefGoogle Scholar
  11. Boring, J.W., Nansheng, Z., Chrisey, D.B., O’Shaughnessy, D.J., Phipps, J.A., Johnson, R.E. (1985) The production and sputtering of S2 by keV ion bombardment. Lagerkvist, C.I., Lindblad, B.A., Lundstedt, H., Rickman, H. (eds) Asteroids, comets and meteors II. Univ. Press Uppsala, pp. 229–234.Google Scholar
  12. Brown, M.E. and Hill, R.E. (1996) Discovery of an extended Na cloud around Europa, Nature, 380, pp. 229–231.ADSCrossRefGoogle Scholar
  13. Brown, W.L., Lanzerotti, L.J., Poate, J.M., Augustyniak, W.M. (1978) Sputtering of ice by MeV light ions. Phys. Rev. Lett, 40, pp. 1027–1030.ADSCrossRefGoogle Scholar
  14. Brown, W.L., Augustyniak, W.M., Brody, E., Cooper, B., Lanzerotti, L.J., Ramirez, A. Evatt, E., Johnson, R.E. (1980a) Energy dependence of the erosion of H2O ice films by H and He ions, Nucl. Instrum. Methods, 170, pp. 321–325.ADSCrossRefGoogle Scholar
  15. Brown, W.L., Augustyniak, W.M., Lanzerotti, L.J., Johnson, R.E., Evatt, R. (1980b) Linear and non-linear processes in the erosion of H2O ice by fast light ions, Phys. Rev. Lett, 45, pp. 1632–1635.ADSCrossRefGoogle Scholar
  16. Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G., Pirronello, V. (1982) Erosion and molecular formation in condensed gas films by electronic energy loss of fast ions, Nucl. Instrum. Methods, 198, pp. 1–8.ADSCrossRefGoogle Scholar
  17. Brown, W.L., Augustynaik, W.M., Marcantonio, K.J., Simmons, E.H., Boring, J.W., Johnson, R.E., Reimann, C.T. (1984) Electronic sputtering of low temperature molecular solids, Nucl. Instrum Methods Bl, pp. 307–314.ADSGoogle Scholar
  18. Brown, W.L., Lanzerotti, L.J., Marcantonio, K.J., Johnson, R.E., Reimann, C.T. (1986) Sputtering of ices by high energy particle impact, Nucl. Instrum. Methods B14, pp. 392–402.ADSGoogle Scholar
  19. Brown, W.L., Foti, G., Lanzerotti, L.J., Bower, J.E., Johnson, R.E. (1987) Delayed emission of hydrogen from ion bombardment of solid methane, Nucl. Instrum. Methods B19/20 pp. 899–902.Google Scholar
  20. Calcagno, L., Oostra, D.J., Pedrys, R., Haring, A., de Vries, A.E. (1986) Erosion of methane induced by electron bombardment, Nucl. Instrum Methods B17, pp. 22–24.ADSGoogle Scholar
  21. Calvin, W.M. Clark, R.M., Brown, R. A., (1995) Spectra of the icy Galilean satellites from 0.2 to 0.51/4m: a compilation, new observations, and a recent summary, J. Geophys. Res., 100, pp. 19041–19048.ADSCrossRefGoogle Scholar
  22. Calvin, W.M., Johnson, R.E., Spencer, J.R. (1996) O2 on Ganymede: Spectral characteristics and plasma formation mechanisms, Geophys. Res. Lett., 23, pp. 673–676.ADSCrossRefGoogle Scholar
  23. Cheng, A.F., Lanzerotti, L.J. (1978) Ice sputtering by radiation belt protons and the rings of Saturn and Uranus, J. Geophys. Res., 83, pp. 2597–2602.ADSCrossRefGoogle Scholar
  24. Cheng, A.F., Johnson, R.E. (1989) Effects of magnetosphere interactions on origin and evolution of atmospheres. Atreya S.K., Pollack, J.B. (eds) Origin and evolution of atmospheres. Univ. of Arizona Press, Tucson, pp. 682–722.Google Scholar
  25. Cheng, A.F., Lanzerotti, L.J., Pironnello, V. (1982) Charged particle sputtering of ice surfaces in Saturn’s magnetosphere, J. Geophys. Res.,87, pp. 4567–4570.ADSCrossRefGoogle Scholar
  26. Cheng, A.F., Haff, P.K., Johnson, R.E., Lanzerotti, L.J. (1986) Interactions of magnetospheres with icy satellite surfaces. Burns, J.A., Matthews, M.S. (eds) Satellites. Univ. of Arizona Press, Tucson, pp. 403–436.Google Scholar
  27. Chrisey, D.B., Boring, J.W., Phipps, J.A., Johnson, R.E. (1986a) Sputtering of molecular gas solids by keV ions, Nucl. Instrum. Methods B13, pp. 360–364.ADSGoogle Scholar
  28. Chrisey, D.B., Boring, J.W., Phipps, J.A., Johnson, R.E. (1986b) Sputtering of sulfur by keV ions, Nucl. Instrum. Methods B13, pp. 360–364.ADSGoogle Scholar
  29. Chrisey, D.B., Johnson, R.E., Phipps, J.A., McGrath, M.A., Boring, J.W. (1987) Sputtering of sulfur by kiloelectron volt ions: Application to the magnetospheric plasma interaction with Io, Icarus, 70, pp. 111–123.ADSCrossRefGoogle Scholar
  30. Chrisey, D.B., Johnson, R.E., Boring, J.W., Phipps, J.H. (1988) The ejection of sodium from sodium sulfide on the surface of Io, Icarus, 75, pp. 233–244.ADSCrossRefGoogle Scholar
  31. Chrisey, D.B., Brown, W.L., Boring, J.W. (1989) Electronic excitation of condensed CO: sputtering and chemical change, Surf. sci., 225, pp. 130–140.CrossRefGoogle Scholar
  32. Chrisey, D.B., Brown, W.L., Boring, J.W. (1990) Electronic sputtering of condensed CO: sputtering and chemical change, Surf. sci., 225, pp. 130–142.ADSCrossRefGoogle Scholar
  33. Christiansen, J.W., Capini, D.D., Tsong, I.S.T. (1986) Sputtering of ices by keV ions, Nucl. Instrum. Methods B15, pp. 218–221.ADSGoogle Scholar
  34. Clark, R.N., Brown A.H., Owensby, P.D., Fanale, F.D. (1984) Saturn’s satellites: Nearinfrared spectrometry (0.65-2.5/im) of the leading and trailing sides and compositional information, Icarus, 5, pp. 265–281.ADSCrossRefGoogle Scholar
  35. Clark, B.E., Johnson, R.E. (1996) Interplanetary weathering: Surfaces erosion in outer space, EOS Trans., AGU 77, pp. 141–145.ADSCrossRefGoogle Scholar
  36. Cooper, B., Tombrello, T.A. (1989) Sputtering of water ice by MeV ions, Radiat. Eff., 80, pp. 203–209.Google Scholar
  37. David, D.E. and Michl, J. (1989) Sputtering of condensed gases by nuclear stopping: chemical aspects, Prog. Solid St. Chem., 19, p. 283.CrossRefGoogle Scholar
  38. Dello Russo, N., Khanna, R.K., and Moore, M.H. (1993) Identification and yield of carbonic acid and formaldehyde in irradiated ices, J. Geophys. Res., 98, pp. 5505–5510.ADSCrossRefGoogle Scholar
  39. Dessler, A.J. (1983) Physics of the Jovian Magnetosphere. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
  40. de Jonge, R., Bailer, T., Tenner, M.G., de Vries, A.E., and Snowden, K.J. (1986) Internal energy distribution of sputtered sulfur molecules, Nucl. Instrum. and Method B17 p. 213.ADSCrossRefGoogle Scholar
  41. de Vries, A.E., Haring, R.A., Haring, A., Klein, F.S., Kummel, A.C., Saris, F.W. (1984a) Synthesis and sputtering of newly formed molecules by kiloelectron volt ions, J. Phys. Chem., 88, pp. 4510–4512.ADSCrossRefGoogle Scholar
  42. de Vries, A.E., Pedrys, R., Haring, R.A., Haring, A., Saris, F.W. (1984b) Emission of large hydrocarbons from CH4 by proton irradiation, Nature (Lond) 311 p. 40.CrossRefGoogle Scholar
  43. Eichhorn, K. and Grün, E. (1993) High-velocity impacts of dust particles in low-temperature water ice. Planet. Space sci., 41, pp. 429–433.ADSCrossRefGoogle Scholar
  44. Ellegaard, O., Schou, J. Sivensen, H., Birgesen, P., (1986) Electronic sputtering of solid nitrogen and oxygen by keV electrons, Surf. sci., 147, pp. 474–492.CrossRefGoogle Scholar
  45. Ellegaard, O., Schou, J., Sφrensen, H. Pedrys, R., Worcyak, B. (1993). Sputtering of solid nitrogen by keV helium ions, Nucl. Instrum. Methods, B78, pp. 192–197.ADSGoogle Scholar
  46. Ellegaard, O., Schou, J. Stenum, B., Sφrensen, H., Pedrys, R., Warczak, B., Oostra, D.J., Haring, A., deVries, A.E. (1994) Sputtering of solid nitrogen and oxygen by keV hydrogen ions, Surf. sci., 302, pp. 371–377.ADSCrossRefGoogle Scholar
  47. Eriksson, J., Kopniczky, T., Brinkmaln, G. Papaleo, R., Demerev, P., Reimann, C.T., Hakansson, P., Sundqvist, B.U.R. (1995) Heavy ion-induced sputtering and cratering of biological surfaces, Nucl. lustrum Methods, B101, pp. 142–147.ADSCrossRefGoogle Scholar
  48. Eviatar, A. and Richardson, J.D. (1992) Thermal plasma in the inner kronian magneto-sphere, Ann. Geophys., 10, pp. 511–519.ADSGoogle Scholar
  49. Foti, G., Calcagno, L., Zhu, F.Z. Strazzulla, G. (1987). Chemical evolution of solid methane by keV ion bombardment, Nucl. Instrum Methods, B24/25, pp. 522–525.ADSGoogle Scholar
  50. Gibbs, K., Brown, W.L., and Johnson, R.E. (1989) Electronic sputtering of condensed O2, Phys. Rev. B38, pp. 1–7.Google Scholar
  51. Gittus, J. (1978) Irradiation Effects in Crystalline Solids. Applied Science, London.Google Scholar
  52. Haff, P.K., Eviatar, A., Siscoe, G. (1983) Ring and plasma: The enigmae of Enceladus, Icarus, 56, pp. 426–438.ADSCrossRefGoogle Scholar
  53. Hall, D.T., Strobel, D.F., Feldman, P.D., McGrath, M.A., Weaver, H.A. (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa, Nature, 373, pp. 677–679.ADSCrossRefGoogle Scholar
  54. Hall, D.T., Feldman, P.D., Holberg, J.B. McGrath, M.A. (1996). Fluorescent hydroxyl emissions from Saturn’s ring atmosphere, Science, 272, pp. 516–518.ADSCrossRefGoogle Scholar
  55. Haring, R.A., Haring, A., Klein, F.W., Kummel, A.C., de Vries, A.E. (1983) Reaction sputtering of simple condensed gases by keV heavy ion bombardment, Nucl. Instrum. Methods 211, pp. 529–533.CrossRefGoogle Scholar
  56. Haring, R.A., Kolfschaten, A.W., de Vries, A.E. (1984a) Chemical sputtering by keV ions, Nucl Instrum. Methods B2, pp. 544–549.ADSGoogle Scholar
  57. Haring, R.A., Pedrys, R., Oostra, D.J., Haring, A., de Vries, A.E. (1984b) Reactive sputtering of simple condensed gases by keV ions II: Mass spectra, Nucl. Instrum. Methods B5, pp. 476–482.ADSGoogle Scholar
  58. Haring, R.A., Pedrys, R., Oostra, D.J., Haring, A., de Vries, A.E. (1984c) Reactive sputtering of simple condensed gases by keV ions III: kinetic energy distributions, Nucl. Instrum. Methods B5, pp. 483–488.ADSGoogle Scholar
  59. Heide, H.G. (1984) Observations on ice layers, Ultramicroscopy, 14 pp. 271–278.CrossRefGoogle Scholar
  60. Hudel, E., Steinacker, E., Feulner, P. (1992) Kinetic energy distribution of particles desorbed from solid N2,O2 and NO by electron impact, Surf. sci., 273, pp. 405–410.ADSCrossRefGoogle Scholar
  61. Ip, W.-H. (1996) Europa’s Oxygen Exosphere and its Magnetic Interaction Icarus, 120, pp. 317–325.ADSCrossRefGoogle Scholar
  62. Ip, W-H. (1997) On neutral cloud distributions in the Saturnian magnetosphere, Icarus, 126, pp. 42–57.ADSCrossRefGoogle Scholar
  63. Johnson, R.E. (1985a) Polar Frost on Ganymede, Icarus, 62, pp. 344–347.ADSCrossRefGoogle Scholar
  64. Johnson, R.E. (1985b) Comment on the evolution of interplanetary grains. Ices in the Solar System éd. J. Klinger et al., D. Reidel, Dordrecht, pp. 334–339.Google Scholar
  65. Johnson, R.E. (1989a) Electronic sputtering: angular and charge-state dependence of the yield via superposition, J. de Physique Colloque, C2, pp. 251–257.Google Scholar
  66. Johnson, R.E. (1989b) Sputtering of a planetary regolith, Icarus, 78, pp. 206–210.ADSCrossRefGoogle Scholar
  67. Johnson, R.E. (1990) Energetic Charged Particle Collision with Atmospheres and Surfaces. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  68. Johnson, R.E. (1996) Sputtering of ices in the outer solar system, Rev. Mod. Phys., 68, pp. 305–312.ADSCrossRefGoogle Scholar
  69. Johnson, R.E. and Baragiola, R.A. (1991) Lunar surface: sputtering and secondary mass spectrometry, Geophys. Res. Lett., pp. 2169–2172.Google Scholar
  70. Johnson, R.E. and Sittler, E.C (1990) Sputter Produced Plasma as a measure of satellite surface composition: The Cassini Mission, Geophys. Res. Lett., 17, p. 1629.ADSCrossRefGoogle Scholar
  71. Johnson, R.E. and Brown, W.L. (1982) Electronic Mechanisms for sputtering of condensed gas solids by energetic ions, Nucl. Instrum. Methods, 198, pp. 103–118.CrossRefGoogle Scholar
  72. Johnson, R.E. and Schou, J. (1993) Sputtering of inorganic insulators, Fundamental Processes in the Sputtering of Atoms and Molecules (SPUT 92) (ed. P. Sigmund) The Roy. Dan. Acad., Copenhagen, pp. 403–494.Google Scholar
  73. Johnson, R.E. and Liu, M. (1996) Molecular dynamics studies of mini cascades in electronically-stimulated sputtering of condensed-gas solids, J. Chem. Phys., 104, pp. 6041–6051.ADSCrossRefGoogle Scholar
  74. Johnson, R.E. and W.A. Jesser (1997) Micro-atmospheres of O2 and O3 on Ganymede, Astrophys. J. Letters, 480, pp. L79–L82.ADSCrossRefGoogle Scholar
  75. Johnson, R.E. and T.I. Quickenden (1997) Radiolysis and Photolysis of low-temperature ice, J. Geophys. Res., 102, pp. 10985–10996.ADSCrossRefGoogle Scholar
  76. Johnson, R.E. and Sundqvist, B.U.R. (1992) Electronic sputtering: from atomic physics to continuum mechanics, Phys. Today March, pp. 28–36.Google Scholar
  77. Johnson, R.E., Lanzerotti, L.J. and Brown, W.L., (1982) Planetary applications of ion-induced erosion of condensed-gas frosts, Nucl. Instrum. Methods, 198, pp. 147–158.ADSCrossRefGoogle Scholar
  78. Johnson, R.E., Boring, J.W., Reimann, C.T., Barton, L.A., Sieveka, E.M., Garrett, J.W., Farmer, K.R., Brown, W.L. and Lanzerotti, L.J. (1983a). Plasma ion-induced molecular ejection on the Galilean satellites: energies of ejected molecules, Geophys. Res. Lett., 10, pp. 892–895.ADSCrossRefGoogle Scholar
  79. Johnson, R.E., Lanzerotti, L.J., Brown, W.L. Augustyniak, W.M. and Mussil, C. (1983b). Charged particle erosion of frozen volatiles in ice grains and comets, Astron. Astrophys., 123, pp. 343–346.ADSGoogle Scholar
  80. Johnson, R.E., Garrett, J.W., Boring, J.W., Barton, L.A. and Brown, W.L. (1984) Erosion and modification of SO2 ice by ion bombardment of the surface of Io, J. Geophys. Res. Suppl, 89, pp. B711–B715.ADSCrossRefGoogle Scholar
  81. Johnson, R.E. Barton, LA. Boring, J.W., Jesser, W.A., Brown, W.L. and Lanzerotti, L.J. (1985) Charged particle modification of ices in the Jovian and Saturnian systems. Klinger, J. et al. (eds) Ices in the Solar System. D. Reidel, Dordrecht, pp. 301–306.Google Scholar
  82. Johnson, R.E., Nelson, M., McCord, T. and Gradie, J. (1988) Analysis of Voyager images of Europa: plasma bombardment, Icarus, 75, pp. 423–436.ADSCrossRefGoogle Scholar
  83. Johnson, R.E., Sundqvist, B.U.R., Hedin, A. and Fenyö, D. (1989a) Sputtering by fast ions based on a sum of impulses, Phys. Rev. B40, pp. 49–53.ADSGoogle Scholar
  84. Johnson, R.E., Pospieszalska, M., Sieveka, E.M., Cheng, A.F., Lanzerotti, L.J. and Sittler, E.C. (1989b) The neutral cloud and heavy ion inner Torus at Saturn, Icarus, 77, pp. 311–329.ADSCrossRefGoogle Scholar
  85. Johnson, R.E., Pospieszalska, M. and Brown, W.L. (1991a) Linear to quadratic transition in electronic sputtering of N2 and O2, Phys. Rev. B 44, pp. 7263–7272ADSCrossRefGoogle Scholar
  86. Johnson, R.E., Pirronello, V., Sundqvist, B. and Donn, B. (1991b) Desorption of large molecules from grains in dense interstellar clouds, Astrophys. J., 379, pp. L75–L77.ADSCrossRefGoogle Scholar
  87. Johnson, R.E., Grosjean, D.E. and Baragiola, R.A. (1993). Sputtering still the dominant source of atmosphere on Dione? EOS Trans., AGU 74, pp. 569–573.ADSCrossRefGoogle Scholar
  88. Jurac, S. and Johnson, R.E. (1997) Sputtering of Saturn’s E-ring, J. Geophys. Res., Submitted.Google Scholar
  89. Kimmel, G.A., Orlando, T.M., Vezina, C. and Sanche, L. (1994) Low energy electron-stimulated production of molecular hydrogen, /. Chem. Phys., 101, pp. 3282–3286.ADSGoogle Scholar
  90. Kimmel, G.A. and Orlando, T.M. (1995) Low-energy (5-120 eV) electron-stimulated dissociation of amorphous D2O ice: O(2S), 03P2,1,0) and O(1D2) yields and velocity distributions, Phys. Rev. Lett., 75, pp. 2606–2609.ADSCrossRefGoogle Scholar
  91. Lane, A.L., Nelson, R.M. and Matson, D.L. (1981) Evidence for sulfur implantation in Europa’s UV absorption band, Nature, 292, pp. 38–39.ADSCrossRefGoogle Scholar
  92. Lanzerotti, L.J., Brown, W.L., Poate, J.M. and Augustyniak, W.M. (1978) On the contribution of water products from Galilean satellites to the Jovian magnetosphere, Geophys. Res. Lett, 5, pp. 155–158.ADSCrossRefGoogle Scholar
  93. Lanzerotti, L.J., Brown, W.L., Augustyniak, W.M., Johnson, R.E. and Armstrong, T.P (1982) Laboratory studies of charged particle erosion of SO2 ice and applications to the frosts of Io, Astrophys. J., 259, pp. 920–929.ADSCrossRefGoogle Scholar
  94. Lanzerotti, L.J., Maclennon, C.G., Brown, W.L., Johnson, R.E., Barton, L.A., Reimann, C.T., Garrett, J.W. and Boring, J.W. (1983) Implications of Voyager data for energetic ion erosion of the icy satellites of Saturn, /. Geophys. Res., 88, pp. 8765–8770; (1984) Erratum 89, p. 9157.ADSCrossRefGoogle Scholar
  95. Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J. and Johnson, R.E. (1984) Production of ammonia depleted surface layers on Saturnian satellites by ion sputtering, Nature, 312, pp. 139–140.ADSCrossRefGoogle Scholar
  96. Lanzerotti, L.J., Brown, W.L. and Johnson, R.E. (1985) Laboratory studies of ion irradiation of water, sulfur dioxide, and methane ices. Klinger, J et al. (eds) Ices in the Solar System, Reidel, Dordrecht, pp. 317–333.CrossRefGoogle Scholar
  97. Lanzerotti, L.J., Brown, W.L. and Marcantonio, K.J. (1987) Experimental study of erosion of methane ice by energetic ions and some consideration for astrophysics, Astro-phys. J., 313, pp. 910–919.ADSCrossRefGoogle Scholar
  98. Lepoire, D.J., Cooper, B.H., Melcher, C.L. and Tombrello, T.A., (1983) Sputtering of SO2 by high energy ions, Rad. Effects, 71, pp. 245–255.CrossRefGoogle Scholar
  99. Matich, A.J., Bakker, M.G., Lennon, D., Quickenden, T.I. and Freeman, C.G. (1993) O2 luminescence from UV-excited H2O and D2O ices, J. Phys. Chem., 97, pp. 10539–10553.CrossRefGoogle Scholar
  100. Matsuura, T. (1992) Handbook of Hot Atom Chemistry. Kodansha Ser. Ltd, Tokyo.Google Scholar
  101. McGrath, M.A., Johnson, R.E. and Lanzerotti, L.J. (1986) Sputtering of sodium on the planet Mercury, Nature (Lond), 22, pp. 694–696.ADSCrossRefGoogle Scholar
  102. Melcher, C.L., LePoire, D.J., Cooper, B.H. and Tombrello, T.A. (1982) Erosion of frozen sulfur dioxide by ion bombardment: application to Io, Geophys. Res. Lett., 9, pp. 1151–1154.ADSCrossRefGoogle Scholar
  103. Mendillo, M. and Baumgardner, J. (1995) Constraints on the origin of the Moon’s atmosphere from observations during a lunar eclispe, Nature, 377, pp. 404–406.ADSCrossRefGoogle Scholar
  104. Morfill, F., Haunes, O. and Goertz, C.K. (1993) Origin and Maintenance of the oxygen in Saturn’s magnetosphere, J. Geophys. Res., 98, pp. 11285–11297.ADSCrossRefGoogle Scholar
  105. Moore, M.H. (1984) Studies of proton-irradiated SO2 at low temperatures: Implications for Io, Icarus, 59, pp. 114–128.ADSCrossRefGoogle Scholar
  106. Moore, M.H. and Tanabe, T. (1990) Mass spectra of sputtered polyoxymethylene: its implications for comets, Ap. J. Lett., 365, pp. L39–L42.ADSCrossRefGoogle Scholar
  107. Moore, M.H. and Khanna, R.K. (1990) The infrared and mass spectra of proton irradiated H2O and CO2 ices: identification of carbonic acid, Spec. Chem. Acta., 479, pp. 255–262.Google Scholar
  108. Moore, M.H. and Hudson, R.L. (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation, Astrophys. J., 401, pp. 353–360.ADSCrossRefGoogle Scholar
  109. Mukai, T., Blum, J., Nakamura, A.M., Johnson, R.E. and Havnes, O. (1997) Physical Processes. In physical Process for Interplanetary Dust. Ed. E. Griiin et al. in press.Google Scholar
  110. Nelson, R.M., Lane, A.L. Matson, D.L., Veeder, G.J., Buratti, B.J., and Tedesou, E.E. (1987) Spectral geometric albedos of the Galilean satellites from 0.24 to 0.35 micrometers: observations with IUE, Icarus, 72, pp. 358–382.ADSCrossRefGoogle Scholar
  111. Noll, K.S., Weaver, H.A. and Gonnella, A.M. (1995) The albedo spectrum of Europa from 2200A to 3000A, J. Geophys. Res., 100, pp. 19,057–19,062.ADSCrossRefGoogle Scholar
  112. Noll, K.S., Johnson, R.E., Lane, A.L., Dominque, D.L. and Weaver, H.A. (1996) Detection of ozone on Ganymede, Science, 273, pp. 341–343.ADSCrossRefGoogle Scholar
  113. Noll, K.S., Roush, T.L., Cruikshank, D.P., Johnson, R.E. and Pendleton, Y.J. (1997) Detection of ozone on Saturn’s satellites Rhea and Dione, Nature, 388, pp. 45–47.ADSCrossRefGoogle Scholar
  114. Ollerhead, R.W., Bφttiger, J., Davies, J.A., L’Ecuyer, J., Haugen, H.K. and Matsunami, N. (1980) Evidence for thermal spike in the erosion of frozen Xenon, Rad. Eff., 49, pp. 203–212.CrossRefGoogle Scholar
  115. Pedrys, R., Haring, R.A., Haring, A and de Vries, A.E. (1984) Erosion of frozen SF6 electron bombardment, Nucl. Instrum. Methods B2, p. 573.ADSGoogle Scholar
  116. Pedrys, R, Oostra, D.J. and de Vries, A.E., (1985) in Desorption Induced by Electronic Transitions, DIET II, eds. Breig, W., and Menzel, D., Springer, Berlin, p. 190.CrossRefGoogle Scholar
  117. Pedrys, R., Oostra, D.J., Haring, R.A., Calcagno, L., Haring, A. and de Vries, A.E. (1986) Emission of large molecules from methane by ion bombardment, Nucl. Instrum. Methods B17, pp. 15–21.ADSGoogle Scholar
  118. Pedrys, R., Oostra, D.J., Haring, A. DeVries, A.E., Schou, J. (1989) Energy spectra for sputtering of N2 and O2 by keV electrons, Radiat. Eff. Defects Solids, 109, pp. 239–247.CrossRefGoogle Scholar
  119. Pedrys, R., Oostra, D.J., Haring, A., de Vries, A.E., Schou, J. (1989) Energy distribution for electronic sputtering of solid nitrogen, Radiat. Eff. Defects Solids, 109, pp. 239–244.CrossRefGoogle Scholar
  120. Pedrys, R., Warczak, B., Schou, J. and Ellegaard, O., (1995a) to be published.Google Scholar
  121. Pedrys, R., Warczak, B., Haring, A. de Vries, A.E. and Schou, J. (1995b) Energy and mass distribution from electron-sputtered solid oxygen and nitrogen, Nucl. Instrum. Meth., in press.Google Scholar
  122. Pirronello, V., Brown, W.L., Lanzerotti, L.J., Marcantonio, K.J. and Simmons, E. (1982) Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions, Astrophys. J., 262, pp. 636–640.ADSCrossRefGoogle Scholar
  123. Pirronello, V., Strazzulla, G., Foti, G., Brown, W.L. and Lanzerotti, L.J. (1984) Formaldehyde formation in cometary nuclei, Astron. Astro., 134, pp. 204–206.ADSGoogle Scholar
  124. Pospieszalska, M.K. and Johnson, R.E. (1991) Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus, Icarus, 93, pp. 45–52.ADSCrossRefGoogle Scholar
  125. Reimann, C.T. (1993), Fundamental Processes in Sputtering of Atoms and Molecules (SPUT 92). ed. P. Sigmund, Roy. Dan. Soc, Copenhagen.Google Scholar
  126. Reimann, C.T., Boring, J.W., Johnson, R.E., Garrett, J.W., Farmer, K.R. and Brown, W.L. (1984) Ion-induced molecular ejection from D2O ice, Surf. sci., 147, pp. 227–240.ADSCrossRefGoogle Scholar
  127. Richardson, J.D. and Sittler, E.C. (1990). A plasma density model for Saturn based on Voyager observations, J. Geophys. Res., 95, pp. 12019–12031.ADSCrossRefGoogle Scholar
  128. Rocard, F., Benit, J., Bibring, J.P., Ledu, D. and Meunier, R., (1986) Erosion of ices: Physical and astrophysical discussion, Rad. Effects, 99, pp. 97–104.CrossRefGoogle Scholar
  129. Roessler, K. (1992) Non-equilibrium chemistry in space, Nucl. Instrum. Method B65, pp. 55–66.ADSGoogle Scholar
  130. Rook, F.L., Johnson, R.E. and Brown, W.L. (1985) Electronic sputtering of solid N2 and O2: A comparison of non-radiative relaxation processes, Surf. Set., 164, pp. 625–639.ADSCrossRefGoogle Scholar
  131. Roth, J. (1983) Sputtering by Particle Bombardment II. (ed. R. Behrisch) Springer-Verlag, Berlin, pp. 91–146.CrossRefGoogle Scholar
  132. Sack, N. and Baragiola, R.A. (1993) Sublimation of vapor-deposited water ice below 170K and its dependence on growth conditions, Phys. Rev. B48, pp. 9973–9978.ADSGoogle Scholar
  133. Sack, N., Johnson, R.E., Boring, J.W. and Baragiola, R.A. (1992) The Effect of Mag-netospheric ion bombardment on the reflectance of Europa’s surface, Icarus, 100, pp. 534–540.ADSCrossRefGoogle Scholar
  134. Scherzer, R.M.U. (1983) Sputtering by Particle Bombardment II. (ed. R. Behrisch) Springer-Verlag, Berlin, pp. 271–358.CrossRefGoogle Scholar
  135. Schreier, R., Eviatar, A., Vasyliunas, V.M. and Richardson, J.D. (1993) Modeling Europa’s plasma torus, J. Geophys. Res., 98, pp. 21231–21243.ADSCrossRefGoogle Scholar
  136. Schriver, K.E., Hahn, M.Y. and Wetten, R.L. (1987) Excition fusion in molecular clusters, Phys. Rev. Lett., 59, pp. 1906–1909.ADSCrossRefGoogle Scholar
  137. Schou, J., Sφrensen, H. and Bφrgesen, P. (1984) The measurement of electronic-induced erosion of condensed gases: experimental methods, Nucl. Instrum. Methods B5, pp. 44–57.ADSGoogle Scholar
  138. Schou, J., Ellegaard, O., Bírgesen, P. and Sírensen, H. (1985) Electronic sputtering of CO. Brenning, W., Menzel, D. (eds) Desorption induced by electronic transitions DIET II. Springer, Berlin Heidelberg New York, pp. 170–173.CrossRefGoogle Scholar
  139. Schwentner, S.C., Schriver, R.M. and Chergui, M. (1991) Cage effect in the photo-dissociation of H2O in Xe matrices, J. Chem. Phys., 95, pp. 6124–6132.Google Scholar
  140. Seiberling, L.E., Meins, C.K., Cooper, B.M., Griffith, J.E., Mendenhal, M.H. and Tombrello, T.A. (1982) The sputtering of insulating materials by fast heavy ions, Nucl. Instrum Methods, 198, pp. 17–25.CrossRefGoogle Scholar
  141. Shemansky, D.E. and Hall, D.T. (1992) The Distribution of Atomic hydrogen in the magnetosphere of Saturn, J. Geophys. Res., 97, pp. 4143–4161.ADSCrossRefGoogle Scholar
  142. Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-Y. and Tripp, T.M., (1993) Detection of the hydroxy radical in the Saturn’s magnetosphere, Nature, 363, pp. 329–331.ADSCrossRefGoogle Scholar
  143. Shi, H., Cloutier, P. and Sanche, L. (1995) Low energy electron stimulated desorption of metastable particles from condensed N2 and CO, Phys. Rev. B52, pp. 5385–5391.ADSGoogle Scholar
  144. Shi, M. (1996) The sputtering of low temperature solids. Ph.d Thesis University of Virginia, Charlottesville.Google Scholar
  145. Shi, M., Baragiola, R.A., Grosjean, D.E., Johnson, R.E., Jurac, S. and Schou, J. (1995a) Sputtering of Water Ice and The Production of Extended Neutral Atmospheres, J. Geophys. Res., 100, pp. 26387–26395.ADSCrossRefGoogle Scholar
  146. Shi, M., Grosjean, D.E., Schou, J. and Baragiola, R.A. (1995b) Particle Emission Induced by Ionization Tracks in Water Ice, Nucl. Instrum. Methods B96, pp. 524–529.ADSGoogle Scholar
  147. Sieveka, E.M. and Johnson, R.E. (1982) Thermal and Plasma-induced Molecular Redistribution on the Icy Satellites, Icarus, 51, pp. 528–548.ADSCrossRefGoogle Scholar
  148. Sieveka, E.M. and Johnson, R.E. (1985) Non-isotropic coronal atmosphere on Io, J. Geophys. Res., 90, pp. 5327–5331; Erratum 91, p. 4608.ADSCrossRefGoogle Scholar
  149. Sigmund, P. (1981) Sputtering by ion bombardment: Theoretical concepts in Sputtering by Particle Bombardment I. ed. Behrisch, R., Springer, Berlin, pp. 9–72.Google Scholar
  150. Sigmund, P. and Lam, (1993) Alloy and isotope sputtering. Fundamental Processes in Sputtering of Atoms and Molecules (SPUT 92). (ed. P. Sigmund), The Roy. Dan. Acad., Copenhagen, pp. 255–350.Google Scholar
  151. Spencer, J.R., Calvin, W.M. and Person, M.J. (1995) CCD Spectra of the Galilean satellites: molecular oxygen on Ganymede, J. Geophys. Res., 100, pp. 19049–19056.ADSCrossRefGoogle Scholar
  152. Stenum, B., Schou, J. Sφrensen, H., and Güntler, P. (1989) Erosion and luminescence from pure and impure solid deuterium, Rad. Eff. Def. Solids, 109, pp. 235–238.CrossRefGoogle Scholar
  153. Stenum, B., Ellegaard, O., Schou, J. and Sφrensen, H. (1990) Thickness dependence of the sputtering yield from solid deuterium by light keV ions, Nucl. Instrum. Methods, B48, pp. 530–533.ADSGoogle Scholar
  154. Stenum, B., Schou, J., Ellegaard, O., Sφrensen, H. and Pedrys, R. (1991) Sputtering of solid hydrogen, Phys. Rev. Lett., 67, pp. 2824–2827.ADSCrossRefGoogle Scholar
  155. Strazzulla, G., Torrisi, L., Coffa, S. and Foti, G. (1987) Sputtering of sulfur: experiments and consequences for Io, Icarus, 70, pp. 379–382.ADSCrossRefGoogle Scholar
  156. Strazzulla, G., Torrisi, L. and Foti, G. (1988) Light scattering from ion irradiation of frozen gases, Europhys. Lett., 7, pp. 431–434.ADSCrossRefGoogle Scholar
  157. Strazzulla, G., Baratta, G.A., Leto, G. and Foti, G. (1992) Europhys. Lett, 18, p. 517.ADSCrossRefGoogle Scholar
  158. Thestrup, B., Svendsen, W., Schou, J. and Ellegaard, O. (1994) Sputtering of Thick deuterium films by keV electrons, Phys. Rev. Lett., 73, pp. 1444–1447.ADSCrossRefGoogle Scholar
  159. Tombrello, T.A. (1995). Cluster-solid interactions, Nucl. Instrum. Methods, B99 pp. 225–228.ADSGoogle Scholar
  160. Torrisi, L., Cofa, S., Foti, G. and Strazzulla, G. (1986) Sulfur erosion by 1.0 MeV heliumions, Radiat. Eff., 100, pp. 61–65.CrossRefGoogle Scholar
  161. Torrisi, L., Coffa, S., Foti, G., Johnson, R.E., Chrisey, D.B. and Boring, J.W. (1988) Threshold dependence in the electronic sputtering of condensed sulfur, Phys. Rev. B38, pp. 1516–1519.ADSGoogle Scholar
  162. Tryka, K.A., Brown, R.H. and Johnson, R.E. (1997) Stability of CO2+ NH3 on the Uranian satellites, submitted.Google Scholar
  163. Westley, M.A. (1994) Optical Studies of Amorphous Ice. Master’s Thesis in Engineering Physics, The University of Virginia, Charlottesville, Va. 22903Google Scholar
  164. Westley, M.A., Baragiola, R.A., Johnson, R.E. and Baratta, G.A. (1995a) Photondesorption from low-temperature water ice in interstellar and circumsolar grains, Nature, 373, pp. 405–407.ADSCrossRefGoogle Scholar
  165. Westley, M.A., Baragiola, R.A., Johnson, R.E. and Baratta, G.A. (1995b) Ultraviolet photodesorption from water ice, Planet. Space sci., 43, pp. 1311–1315.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • R. E. Johnson
    • 1
  1. 1.Engineering PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations