Advertisement

Chemistry of Ice Induced by Bombardment with Energetic Charged Particles

  • G. Strazzulla
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

The presence of intense fluxes of charged particles impinging on the solid surfaces of planets, satellites, and rings in the Outer Solar System, produces a number of effects whose knowledge appears to be essential for understanding the evolution of these objects. This type of research is based on laboratory simulations of relevant targets (e.g. molecular solids) bombarded with charged particles under physical conditions more or less similar to the astrophysical ones. Here I review the experimental results obtained, in recent years, on physical-chemical effects induced on frozen gases (CO, CO2, CH4, H2O, etc.) and mixtures simulating ice targets in space (frosts on planets, satellites, comets, etc.). In particular I discuss the ion induced formation of new species. Some properties of the organic refractory residues left over by ion-irradiation are also presented. In the Solar System, frozen surfaces are continuously bombarded by energetic ions from solar wind and flares, planetary magnetospheres and galactic cosmic rays. Many applications of the above type of experiments have been discussed in recent years and are here reviewed. These include modifications undergone by comets and satellites in the outer Solar System.

Keywords

Oort Cloud Outer Solar System Planetary Magnetosphere Planetary Object Uranian Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allamandola, L.J., Sandford, S.A. and Valero, G.J. (1988) Photochemical and thermal evolution of interstellar precometary ice analogs, Icarus, 76, pp. 225–252.ADSCrossRefGoogle Scholar
  2. Baratta, G.A., Leto, G., Spinella, F., Strazzulla, G. and Foti, G. (1991) The 3.1 μm feature in ion-irradiated water ice, A&A, 252, pp. 421–424.ADSGoogle Scholar
  3. Baratta, G.A., Castorina, A.C., Leto, G., Palumbo, M.E., Spinella, F. and Strazzulla, G. (1994) Ion irradiation experiments relevant to the physics of comets, Planet. Space Sci., 42, pp. 759–766.ADSCrossRefGoogle Scholar
  4. Benit, J., Bibring, J.P. and Rocard, F. (1989) Irradiation effects on ices by energetic ions, In: Materials modification by high-fluence ion beams R. Kelly, M. Fernanda da Silva eds., Kluwer, Dordrecht, pp. 123–128.CrossRefGoogle Scholar
  5. Bibring, J.P. and Rocard, F. (1984) Organic chemistry by irradiation in space, Adv. Space Res., 4, pp. 103–106.ADSCrossRefGoogle Scholar
  6. Bohn, R.B., Sandford, S.A., Allamandola L.J. and Cruikshank D.P. (1994) Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons, Icarus, 111, pp. 151–173.ADSCrossRefGoogle Scholar
  7. Brown, R.H. (1983) The uranian satellites and Hyperion: new spectrophotometry and compositional implications, Icarus, 56, pp. 414–425.ADSCrossRefGoogle Scholar
  8. Brown, R.H., Cruikshank, D.P. and Morrison, D. (1982) Diameters and albedos of satellites of Uranus, Nature 330, pp. 423–425.ADSCrossRefGoogle Scholar
  9. Brucato, J.R., Palumbo, M.E. and Strazzulla, G. (1996) Ion irradiation of frozen water-carbon dioxide mixtures, Icarus, submitted.Google Scholar
  10. Buie, M.W., Cruikshank, D.P., Lebofsky, L.A. and Tedesco, E.F. (1987) Water frost on Charon, Nature, 329, pp. 522–523.ADSCrossRefGoogle Scholar
  11. Calcagno L., Foti G., Torrisi, L. and Strazzulla, G. (1985) Fluffy layers obtained by ion bombardment of frozen methane: experiments and applications to saturnian and uranian satellites, Icarus, 63, pp. 31–38.ADSCrossRefGoogle Scholar
  12. Cameron, A.G.W. (1978) The primitive solar accretion disk and the formation of the planets, In: The origin of the solar system, S.F. Dermott ed., Wiley, New York, pp. 49–74.Google Scholar
  13. Celi G., Baratta, G. and Strazzulla, G. (1995) Vibrational spectroscopy of ion-irradiated frozen butane, Infr. Phys. Tech. 36, pp. 995–1001.CrossRefGoogle Scholar
  14. Cruikshank, D.P., Bell, J.F., Gaffey, M.J., Brown, R.H., Howell, R., Beerman, C. and Rongstad, M. (1983) The dark side of Iapetus, Icarus, 53, pp. 90–104.ADSCrossRefGoogle Scholar
  15. Cruikshank, D.P., Roush, T.L., Owen, T.C., Geballe, T.R., de Bergh, C, Schmitt, B., Brown, R.H. and Bartholomew, M.J. (1993) Ices on the surface of Triton, Sciences, 261, pp. 742–745.CrossRefGoogle Scholar
  16. Foti, G., Calcagno, L., Sheng, K.L. and Strazzulla, G. (1984) Micrometer-sized polymer layers synthesized by MeV ions impinging on frozen methane, Nature, 310, pp. 126–128.ADSCrossRefGoogle Scholar
  17. Gerakines, P.A., Schutte, W.A., Greenberg, J.M. and van Dishoeck, E.F (1995) The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures, A&A, 296, pp. 810–823.ADSGoogle Scholar
  18. Griffith, C.A., Moeckel, R., Cruikshank, D.P., Pendieton, Y.J., Brown, R.H., Owen, T.C., Geballe, T.R. and Joyce, D. (1995) Near-IR spectra of the surfaces of Titan, Rhea, Iapetus and Enceladus, Planet. Space Sci., submitted.Google Scholar
  19. Hage, W., Hallbrucker, A. and Mayer, E. (1993) Carbonic acid: synthesis by protonation of bicarbonate and FTIR spectroscopic characterization via a new cryogenic technique, J. Am. Chem. Soc, 115, pp. 8427–8431.ADSCrossRefGoogle Scholar
  20. Hage, W., Hallbrucker, A. and Mayer, E. (1995) A polymorph of carbonic acid and its possible astrophysical relevance, J. Chem. Soc. Faraday Trans., 91, pp. 2823–2826.CrossRefGoogle Scholar
  21. Hudgins, D.M., Sandford, S.A., Allamandola, L.J. and Tielens, A.G.G.M. (1993) Mid-and far-infrared spectroscopy of ices: optical constants and integrated absorbances, Astrophys. J. Suppl, 86, pp. 713–870.ADSCrossRefGoogle Scholar
  22. Hudson, R.L. and Moore, M.H. (1992) A far-IR study of irradiated amorphous ice: an unreported oscillation between amorphous and crystalline phases, J. Phys. Chem., 96, pp. 6500–6504.CrossRefGoogle Scholar
  23. Jenniskens, P., Baratta, G.A., Kouchi, G.A., de Groot, M., Greenberg, J.M. and Strazzulla, G. (1993) Carbon dust formation on interstellar grains, A & A, 273, pp. 583–600.ADSGoogle Scholar
  24. Johnson, R.E. (1990) Energetic charged particle interactions with atmospheres and surfaces, Lanzerotti L.J. ed., Springer Verlag Press.Google Scholar
  25. Johnson, R.E., Cooper, J.F., Lanzerotti, L.J. and Strazzulla, G. (1987) Radiation formation of a non-volatile comet crust, A & A, 187, pp. 889–892.ADSGoogle Scholar
  26. Kerr, R.A. (1986) Voyager finds uranian shepherds and a well-behaved flock of rings, Sciences, 231, pp. 793–796.CrossRefGoogle Scholar
  27. Kobayashi, K., Kasamatsu, T., Kaneko, T., Koike, J., Oshima, T., Saito, T., Yamamoto, T. and Yanagawa, H. (1995) Formation of amino acid precursors in cometary ice environments by cosmic radiation, Adv. Sp. Res., 16 n°2, pp. 21–26.ADSCrossRefGoogle Scholar
  28. Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J. and Johnson, R.E. (1984) Production of ammonia-depleted surface layers on the saturnian satellites by ion sputtering, Nature, 312, pp. 139–140.ADSCrossRefGoogle Scholar
  29. Lanzerotti, L.J., Brown, W.L. and Marcantonio, K.J. (1987) Experimental study of erosion of methane ice by energetic ions and some considerations for astrophysics, Astrophys. J., 313, pp. 910–922.ADSCrossRefGoogle Scholar
  30. Moore, M.H. (1984) Studies of proton-irradiated SO2 at low temperatures: implication for Io, Icarus, 59, pp. 114–128.ADSCrossRefGoogle Scholar
  31. Moore, M.H. and Hudson, R.L. (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation, Astrophys. J., 401, pp. 353–360.ADSCrossRefGoogle Scholar
  32. Moore, M.H. and Hudson, R.L. (1994) Far-infrared spectra of cosmic-type pure and mixed ices, A & A S, 103, pp. 45–56.ADSGoogle Scholar
  33. Moore, M.H. and Khanna R.K. (1991) Infrared and mass spectral studies of proton irradiated H2O+CO2 ice: evidence for carbonic acid, Spectrochimica Ada, 47, pp. 255–262.ADSCrossRefGoogle Scholar
  34. Moore, M.H., Donn, B., Khanna, R. and A’Hearn, M.F. (1983) Studies of proton-irradiated cometary-type ice mixtures Icarus, 54, pp. 388–405.ADSCrossRefGoogle Scholar
  35. Owen, T.C., Roush, T.L., Cruikshank, D.P., Elliot, J.L., Young, L.A., de Bergh, C, Schmitt, B., Geballe, T.R., Brown, R.H. and Bartholomew, M.J. (1993) Surface ices and atmospheric composition of Pluto, Sciences, 261, pp. 745–748.CrossRefGoogle Scholar
  36. Palumbo, M.E. and Strazzulla, G. (1993) The 2140 cm-1 band of frozen CO: laboratory experiments and astrophysical applications, A & A, 269, pp. 568–580.ADSGoogle Scholar
  37. Pendieton, Y.J., Sandford, S.A., Allamandola, L.J., Helens, A.G.G.M. and Sellgren, K. (1994) Near-infrared absorption spectroscopy of interstellar hydrocarbon grains, Astrophys. J., 437, pp. 683–696.ADSCrossRefGoogle Scholar
  38. Pirronello, V., Brown, W.L., Lanzerotti, L.J., Marcantonio, K.J. and Simmons, E.H. (1982) Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions, Astrophys. J., 262, pp. 636–640.ADSCrossRefGoogle Scholar
  39. Prentice, A.J.R. (1978) Towards a modern laplacian theory for the formation of the solar system. In: The origin of the Solar System S.F. Dermott ed., Wiley, New York, pp. 111–162.Google Scholar
  40. Reitsema, H.J., Hubbard, W.B., Lebofski, L.A. and Tholen, D.J. (1982) Occultation by a possible third satellite of Neptune, Sciences, 215, pp. 289–291.CrossRefGoogle Scholar
  41. Rocard, F. (1986) Etude expérimentale par spectroscopie infrarouge d’effects d’irradiation dans les silicates et dans les glaces, Thèse de Doctorat, Univ. Paris-Sud, OrsayGoogle Scholar
  42. Roessler, K. (1992) Non equilibrium chemistry in space, Nucl. Instr. Meth. in Phys. Res., B65, pp. 55–66.ADSCrossRefGoogle Scholar
  43. Sack, N.J., Baragiola, R.A. and Johnson, R.E. (1993) Effect of plasma ion bombardment on the reflectance of Io’s trailing and leading hemisphere, Icarus, 104, pp. 152–154.ADSCrossRefGoogle Scholar
  44. Smith B.A. et al. (1986) Voyager 2 in the uranian system: imaging science results, Sciences, 233, pp. 43–64.CrossRefGoogle Scholar
  45. Smith, B.A. et al. (1989) Voyager 2 at Neptune: imaging science results, Sciences, 246, pp. 1422–1449.CrossRefGoogle Scholar
  46. Spencer, J.R., Buie, M.W. and Bjoraker, G.L. (1990) Solid methane on Triton and Pluto: 3 to 4 μm spectrophotometry, Icarus, 88, pp. 491–496.ADSCrossRefGoogle Scholar
  47. Spinella, F., Baratta, G.A. and Strazzulla, G. (1991) An apparatus for “in situ” Raman spectroscopy of ion irradiated frozen targets, Rev. Sci. Instr., 62, pp. 1743–1745.ADSCrossRefGoogle Scholar
  48. Squyres, S.W., Reynolds R.T., Cassen P.M. and Peale S.I. (1983) The evolution of Ence-ladus, Icarus, 53, pp. 319–331.ADSCrossRefGoogle Scholar
  49. Squyres, S.W. and Sagan, C. (1983) Albedo asymmetry of Iapetus, Nature, 303, pp. 782–785.ADSCrossRefGoogle Scholar
  50. Stern, S.A., Trafton, L.M. and Gladstone, G.R. (1988) Why is Pluto bright? Omplications of the albedo and lightcurve behavior of Pluto, Icarus, 75, pp. 485–498.ADSCrossRefGoogle Scholar
  51. Strazzulla, G. (1986) Organic materials from Phoebe to Iapetus, Icarus, 66, pp. 397–400.ADSCrossRefGoogle Scholar
  52. Strazzulla, G. and Baratta, G.A. (1991) Laboratory study of ion-irradiated frozen benzene, A & A, 241, pp. 310–316.ADSGoogle Scholar
  53. Strazzulla, G. and Baratta, G.A. (1992) Carbonaceous material by ion-irradiation in space, A & A, 266, pp. 434–438.ADSGoogle Scholar
  54. Strazzulla, G. and Johnson, R.E. (1991) Irradiation effects on comets and cometary debris. In: Comets in the Post-Halley Era R. Jr Newburn, M. Neugebauer, J. Rahe eds., Kluwer, Dordrecht, pp. 243–275.CrossRefGoogle Scholar
  55. Strazzulla G., Calcagno, L. and Foti, G. (1984) Build Up of carbonaceous material by fast protons on Pluto and Triton, A&A, 140, pp. 441–444.ADSGoogle Scholar
  56. Strazzulla, G., Baratta, G.A., Johnson, R.E. and Donn, B. (1991). The primordial comet mantle: irradiation production of a stable, organic crust, Icarus, 91, pp. 101–104.ADSCrossRefGoogle Scholar
  57. Strazzulla, G., Baratta, G.A., Leto, G. and Foti, G. (1992) Ion beam induced amorphyzation of crystalline water ice, Europhys Lett, 18, pp. 517–522.ADSCrossRefGoogle Scholar
  58. Strazzulla, G., Leto, G. and Palumbo, M.E. (1993) Ion irradiation experiment, Adv. Sp. Res., 13, pp. 189–198.ADSCrossRefGoogle Scholar
  59. Strazzulla, G., Castorina A.C. and Palumbo M.E. (1995) Ion irradiation of astrophysical ices, Planet. Space Sci., 43, pp. 1247–1251.ADSCrossRefGoogle Scholar
  60. Tholen, D.J., Buie M.W., Binzel, R.P. and Frueh, M.L. (1987) Improved orbital and physical parameters for the Pluto-Charon system, Sciences, 237, pp. 512–514.CrossRefGoogle Scholar
  61. Trafton, L.M., Stern, S.A. and Gladstone, G.R. (1988) The Pluto-Charon system: the escape of Charon’s primordial atmosphere, Icarus, 74, pp. 108–120.ADSCrossRefGoogle Scholar
  62. Yamamoto, T. (1991) Chemical theories on the origin of comets. In: Comets in the Post-Halley Era, R. Jr Newburn, M. Neugebauer, J. Rahe eds., Kluwer, Dordrecht, pp. 361–376.CrossRefGoogle Scholar
  63. Ziegler, J.F. (1980). Handbook of Stopping Cross Sections for Energetic Ions in All Elements, Pergamon, Elmsford, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • G. Strazzulla
    • 1
  1. 1.Osservatorio AstrofisicoCittà UniversitariaCataniaItaly

Personalised recommendations