Advertisement

Microwave Properties of Ice and Snow

  • Christian Matzler
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

The polar ice sheets and glacier ice contain the majority of the terrestrial water-ice mass. Snow, the freshly precipitated form of ice, covers, to a variable degree, very large parts of the terrestrial surface during the winter season. These icy bodies possess spectral and polarimetric signatures in the microwave range which are suitable for both active (radar) and passive (radiometric) remote sensing. The signatures are related to the special dielectric properties on the one hand, and on the other, to the characteristic structural behavior, ranging from microscopic to macroscopic scale, and being different for different parts of the cryosphere.

Keywords

Dielectric Property Microwave Signature Effective Permittivity Microwave Property Depolarization Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcone, S.A., Gow, A.J. and McGrew, S. (1986) Structure and dielectric properties at 4.8 and 9.5 GHz of saline ice, J. Geophys. Res., 91, pp. 14281–14303.ADSCrossRefGoogle Scholar
  2. Auty, R.P. and Cole, R.H. (1952) Dielectric properties of ice and solid D 2 O, J. Chem. Phys., 20, pp. 1309–1314.ADSCrossRefGoogle Scholar
  3. Bohren, C.F. and Battan, L.J. (1982) Radar backscattering of microwaves by spongy ice spheres, J. Atmosph. Sci, 39, pp. 2623–2628.ADSCrossRefGoogle Scholar
  4. Corr, H., Moore, J.C. and Nicholls, K.W. (1993) Radar absorption due to impurities in antarctic ice, Geophys. Res. Letters, 20, pp. 1071–1074.ADSCrossRefGoogle Scholar
  5. Denoth, A. (1982) Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz, J. Appl. Phys., 53, pp. 7496–7501.ADSCrossRefGoogle Scholar
  6. Fahnestock, M., Bindschadler, R., Kwok, R. and Jezek, K. (1993) Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery, Science, 262, pp. 1530–1534.ADSCrossRefGoogle Scholar
  7. Fujita, S., Shiraishi, M. and Mae, S. (1992) Measurement on the dielectric properties of acid-doped ice at 9.7 GHz, IEEE Trans. Geosci. and Remote Sens., 30, pp. 799–803.ADSCrossRefGoogle Scholar
  8. Fujita, S., Matzuoka, T. and Mae, S. (1993) Dielectric anisotropy in ice Ih at 9.7 GHz, Annals of Glaciology, 17, pp. 276–280.ADSGoogle Scholar
  9. Fujita, S., Surdyk, S., Matzuoka, T., Mae, S. and Hondoh T. (1995) Snow dielectric properties in the 30–40 GHz range: a. measurements with an open resonator, submitted to IEEE Trans. Geosci. Remote Sens.Google Scholar
  10. Gough, S.R. (1972) A low temperature dielectric cell and the permittivity of hexagonal ice to 2K, Can. J. Chem., 50, pp. 3046–3051.ADSCrossRefGoogle Scholar
  11. Hallikainen M. and Winebrenner, D.P. (1992) The physical basis for sea-ice remote sensing, chapter 3 (p. 29–46) in Carsey F.D. (ed.) Microwave remote sensing of sea ice, Geophysical monograph 68, Am. Geophys. Union, Washington D.C.CrossRefGoogle Scholar
  12. Hufford, G. (1991) A model for the complex permittivity of ice at frequencies below 1 THz, Int. J. Infrared and Millimeter Waves, 12, pp. 677–682.ADSCrossRefGoogle Scholar
  13. Lamb, J. (1946) Measurements of the dielectric properties of ice, Trans. Faraday Soc, 42A, pp. 238–244.CrossRefGoogle Scholar
  14. Matsuoka, T., Fujita, S. and Mae, S. (1993) Dielectric properties of NaCl-doped ice at 9.7 GHz, Proc. Nat. Inst. Polar Res. Symp. on Polar Meteorology and Glaciology, 7, pp. 33–40.Google Scholar
  15. Mätzler, C. (1987) Applications of the Interaction of Microwaves with the Natural Snow Cover, Remote Sensing Reviews, 2, pp. 259–392.CrossRefGoogle Scholar
  16. Mätzler, C. and Wegmüller, U. (1987) Dielectric Properties of freshwater ice at microwave frequencies, /. Phys. D: Applied Phys., 20, pp. 1623–1630; Errata, 21, p. 1660 (1988).CrossRefGoogle Scholar
  17. Mätzler, C. (1994) Passive microwave signatures of landscapes in winter, Meteorology and Atmospheric Physics, 54, pp. 241–260.ADSCrossRefGoogle Scholar
  18. Mätzler, C. (1996) Microwave permittivity of dry snow, IEEE Trans. Geosci. Remote Sens., 34, n°2.Google Scholar
  19. Mishima O., Klug, D.D. and Whalley, E. (1983) The far-infrared spectrum of ice Ih in the range 8-25cm-1. Sound waves and difference bands, with application to Saturn’s rings, J. Chem. Phys., 78, pp. 6399–6404.ADSCrossRefGoogle Scholar
  20. Moore, J.C. and Fujita, S. (1993) Dielectric properties of ice containing acid and salt impurity at microwave and low frequencies, JGR, 98, pp. 9769–9780.ADSCrossRefGoogle Scholar
  21. Petrenko, V.F. (1993) Electrical properties of ice, US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) Special Report 93-20, Hanover, New Hampshire.Google Scholar
  22. Polder, D. and van Santen, J.H. (1946) The effective permeability of mixtures of solids, Physica, 12,(5), pp. 257–271.ADSCrossRefGoogle Scholar
  23. Reber, B., Mätzler, C, Schanda, E. (1987) Microwave Signatures of Snow Crusts: Modelling and Measurements, Intern. J. Remote Sensing, 8, pp. 1649–1665.ADSCrossRefGoogle Scholar
  24. Rignot, E.J., Ostro, S.J., van Zyl, J.J. and Jerek, K.C. (1993) Unusual radar echoes from the Greenland ice sheet, Science, 261, pp. 1710–1713.ADSCrossRefGoogle Scholar
  25. Rott, H. (1989) Multispectral microwave signatures of the Antarctic ice sheet, in P. Pampaloni (ed.) Microwave radiometry and remote sensing applications, 89–101, VSP, Utrecht, The Netherlands.Google Scholar
  26. Rott, H., Miller, H., Sturm, K. and Rack, W. (1994) Application of ERS-1 SAR and scatterometer data for studies of the Antarctic Ice Sheet, Proc. 2nd ERS-1 Symp. Hamburg 11–14 Oct. 1993, ESA SP-361, pp. 133–139.Google Scholar
  27. Sihvola, A. and Kong, J.A. (1988) Effective permittivity of dielectric mixtures, IEEE Trans. Geosc. Remote Sens, 26, pp. 420–429; Errata, 27, pp. 101-102 (1989).ADSCrossRefGoogle Scholar
  28. Strozzi, T. and Mätzler, C. (1995) In-situ backscattering measurements of snowcover with coherent scatterometers at 5.3 and 35 GHz, Proc. IGARSS’95, Florence, Italy, July 10–14.Google Scholar
  29. Surdyk, S. and Fujita, S. (1995) Microwave dielectric properties of snow: modeling and measurements, Geophys. Res. Letters, 22, pp. 965–968.ADSCrossRefGoogle Scholar
  30. Tsang, L., Kong, J.A. and Shin, R.T. (1985) Theory of microwave remote sensing, Wiley series in remote sensing, New-York.Google Scholar
  31. Tiuri, M.E., Sihvola, A., Nyfors, E.G. and Hallikainen, M.T. (1984) The complex dielectric constant of snow at microwave frequencies, IEEE J. Ocean. Engin, OE-9, pp. 377–382.CrossRefGoogle Scholar
  32. Ulaby, F.T., Moore, R.K. and Fung, A.K. (1986) Microwave Remote Sensing, Active and Passive, 3, Artech House, Dedham, MA-U.S.A.Google Scholar
  33. Walford, M.E.R. (1968) Field measurements of dielectric absorption in Antarctic ice and snow at very high frequencies, J. Glaciol., 7, n°49, pp. 89–94.ADSGoogle Scholar
  34. Warren, S.T. (1984) Optical constants of ice from the ultraviolet to the microwave, Applied Optics, 23, pp. 1206–1225.ADSCrossRefGoogle Scholar
  35. Wegmüller, U. (1986) Signaturen zur Mikrowellenfernerkundung: Bodenrauhigkeit und Permittivität von Eis, Diploma Thesis, Inst. Appl. Phys., University of Bern, CH-3012 Bern.Google Scholar
  36. Weise, T. and Mätzler, C. (1995) Radiometric and structural measurements of snow samples, Proc. IGARSS’95, Florence, Italy, July 10–14.Google Scholar
  37. Zhang, H., Toudal-Pedersen, L. and Gudmandsen, P. (1989) Microwave brightness temperatures of the Greenland ice sheet, Adv. Space Res., 9, pp. (1)277–(1)287.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Christian Matzler
    • 1
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland

Personalised recommendations