Are changes in N:P ratios in coastal waters the key to increased red tide blooms?

  • I. J. Hodgkiss
  • K. C. Ho
Part of the Developments in Hydrobiology book series (DIHY, volume 123)

Abstract

There is mounting evidence of a global increase in nutrient levels of coastal waters through riverine and sewage inputs, and in both the numbers and frequency (as well as the species composition) of red tides. However, it is still not possible to conclude the extent to which the increase in red tides in coastal waters can be attributed to the increase in nutrient levels, since so many other factors are involved.

Undoubtedly, a relationship exists between red tides and the N and P load of coastal waters, and many nutrient enrichment experiments have shown that marine phytoplankton blooms are often nutrient limited. What is now becoming clear, however, is that although in classical Liebigian terms minimum amounts can be limiting, nutrient ratios (such as N:P and Si:P) are far more important regulators.

This paper reviews evidence collected by the authors from Tolo Harbour, Hong Kong together with data collected in Japanese and North European coastal waters by various authors, which indicates that both long term and relatively short term changes in the N:P ratio are accompanied by increased blooms of non-siliceous phytoplankton groups and, furthermore, that the growth of most red tide causative organisms in Hong Kong coastal water is optimized at a low N:P (atomic) ratio of between 6 and 15.

Key words

N:P ratios coastal waters red tides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M., 1989. Toxic algal blooms and red tides: A global perspective. In Okaichi, T., D. M. Anderson & T. Nemoto (eds), Red Tides: Biology, Environmental Science, and Toxicology. Elsevier, New York, Amsterdam, London: 11–16.Google Scholar
  2. Berg, J. & G. Radach, 1989. Trends in nutrient and phytoplankton concentrations at Helgoland Reede (German Bight) since 1962. ICES CM. 1985/L:2.Google Scholar
  3. Bodeanu, N. & M. Usurelu, 1979. Dinoflagellate blooms in Romanian Black Sea coastal waters. In Taylor, D. L. & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. Elsevier/North Holland, Inc., New York: 151–154.Google Scholar
  4. von Bodungen, B., 1986. Annual cycles of nutrients in a shallow inshore area, Kiel Bight — Variability and trends. Ophelia 26: 91–107.CrossRefGoogle Scholar
  5. Cadée, G. C., 1984. Has input of organic matter to the western Wadden Sea increased during the last decades? In Laane, R. W. P. M. & W. J. Wolff (eds), The Role of Organic Matter in the Wadden Sea. Neth. Inst. Sea Res. Publ. Ser. 10: 71–82.Google Scholar
  6. Cadée, G. G, 1986a. Increased phytoplankton primary production in the Marsdiep area (western Dutch Wadden Sea). Neth. J. Sea Res. 20: 285–290.CrossRefGoogle Scholar
  7. Cadée, G. G, 1986b. Recurrent and changing seasonal patterns in phytoplankton of the westernmost inlet of the Dutch Wadden Sea from 1969-1980. Mar. Biol. 93: 281–289.CrossRefGoogle Scholar
  8. Chan, B. S. S., M. C. Chiu & I. J. Hodgkiss, 1991. Plankton dynamics and primary productivity of Tai Tam Bay, Hong Kong. Asian Mar. Biol. 8: 169–192.Google Scholar
  9. Chan, B. S. S. & I. J. Hodgkiss, 1987. Phytoplankton productivity in Tolo Harbour. Asian Mar. Biol. 4: 79–90.Google Scholar
  10. Chiu, M. C., I. J. Hodgkiss & B. S. S. Chan, 1994. Ecological studies of phytoplankton in Tai Tarn Bay, Hong Kong. Hydrobiologia 273: 81–94.CrossRefGoogle Scholar
  11. Fonselius, S. H., 1972. On biogenic elements and organic matter in the Baltic. Ambio. Spec. Rept. 1: 29–36.Google Scholar
  12. Fransj, H. G., 1986. Effects of freshwater inflow on the distribution, composition and production of plankton in the Dutch coastal waters of the North Sea. In Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems. Springer-Verlag, Berlin: 241–249.CrossRefGoogle Scholar
  13. Gargas, E., S. Mortensen & G. Aertebjerg Nielsen, 1980. Production and photosynthetic efficiency of phytoplankton in the open Danish waters 1975–1977. Ophelia. Supp. 1: 123–144.Google Scholar
  14. Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.CrossRefGoogle Scholar
  15. Ho, K. C. & I. J. Hodgkiss, 1991. Red tides in subtropical waters: An overview of their occurrence. Asian Mar. Biol. 8: 5–23.Google Scholar
  16. Ho, K. C. & I. J. Hodgkiss, 1993. Assessing the limiting factors of red tide by bottle bioassay. Asian Mar. Biol. 10: 77–94.Google Scholar
  17. Ho, K. C. & I. J. Hodgkiss, 1995. A study of red tides caused by Prowcentrum micans Ehrenberg, P. sigmoides Bohm and P. triestinum Schiller in Hong Kong. In Morton, B., G. Xu, R. Zou, J. Pan & G. Cai (eds), The Marine Biology of the South China Sea II. World Publishing Corporation, Beijing, PRC: 111–118.Google Scholar
  18. Hodgkiss, I. J. & B. S. S. Chan, 1983. Pollution studies on Tolo Harbour, Hong Kong. Mar. envir. Res. 10: 1–44.CrossRefGoogle Scholar
  19. Hodgkiss, I. J. & B. S. S. Chan, 1986. Studies on four streams entering Tolo Harbour, Hong Kong in relation to their impact on marine water quality. Arch. Hydrobiol. 108: 185–212.Google Scholar
  20. Hodgkiss, I. J. & B. S. S. Chan, 1987. Phytoplankton dynamics in Tolo Harbour. Asian Mar. Biol. 4: 103–112.Google Scholar
  21. Horstman, D. A., 1981. Reported red water outbreaks and their effects on fauna of the west and south coasts of South Africa, 1959-1980. Fish. Bull. S. Afr. 15: 71–88.Google Scholar
  22. Kononen, K., 1988. Phytoplankton summer assemblages in relation to environmental factors at the entrance to the Gulf of Finland during 1972–1985. Kieler Meeresforsch., Sonderh. 6: 281–294.Google Scholar
  23. Lam, C. W. Y. & K. C. Ho, 1989. Red tides in Tolo Harbour, Hong Kong. In Okaichi, T., D. M. Anderson & T. Nemoto (eds), Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York, Amsterdam, London: 49–52.Google Scholar
  24. Lassig, J., J-M. Leppänen, A. Niemi & G. Tamelander, 1978. Phytoplankton primary production in the Gulf of Bothnia in 1972-1975 as compared with other parts of the Baltic Sea. Finn. Mar. Res. 244: 101–115.Google Scholar
  25. Mihnea, P. E., 1979. Some specific features of dinoflagellate Exuviaella cordata Ostf. blooming in the Black Sea. In Taylor, D. L. & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. Elsevier/North Holland Inc., New York: 77–82.Google Scholar
  26. Nehring, D., 1984. The further development of the nutrient situation in the Baltic Proper. Ophelia, Suppl. 3: 167–179.Google Scholar
  27. Nehring, D., S. Schulz & W. Kaiser, 1984. Long-term phosphate and nitrate trends in the Baltic Proper and some biological consequences: a contribution to the discussion concerning eutrophication of these waters. Rapp. P-v. Reún. Cons. Int. Explor. Mer 183:193–203.Google Scholar
  28. Nielsen, A. & G. Aertebjerg, 1984. Plankton blooms in Danish waters. Ophelia, Suppl. 3: 181–188.Google Scholar
  29. Niemi, A., 1974. Primärproduktionen som kriterium vid uppskattningen av recipienters föroreningsgrad. Nordforsk Miljovards-sekretariatet Publ. 4: 173–188.Google Scholar
  30. Niemi, A. & A. M. Astrom, 1987. Ecology of phytoplankton in the Tvärminne area, SW coast of Finland. IV. Environmental conditions, chlorophyll a and phytoplankton in winter and spring 1984 at Tvärminne Stärfjrd. Ann. Bot. Fenn. 24: 333–352.Google Scholar
  31. Okaichi, T., 1989. Red tide problems in the Seto Inland Sea, Japan. In Okaichi, T., D. M. Anderson & T. Nemoto (eds), Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York, Amsterdam, London: 137–142.Google Scholar
  32. Phillips, D. J. H. & S. Tanabe, 1989. Aquatic pollution in the Far East. Mar. Pollut. Bull. 20: 297–303.CrossRefGoogle Scholar
  33. Pitkanen, H., 1978. The wintertime trends in some physical and chemical parameters in the Gulf of Bothnia 1966-1967. Finn. Mar. Res. 244: 76–83.Google Scholar
  34. Pitkänen, H. & V. Malin, 1980. The mean values and trends of some water quality variables in winter in the Gulf of Finland 1966-1978. Finn. Mar. Res. 247: 51–60.Google Scholar
  35. Prakash, A., 1987. Coastal organic pollution as a contributing factor to red-tide development. Rapp. P.-v. Réun. Cons. Int. Explov. Mer 187:61–65.Google Scholar
  36. Qi, Y, Y. Hong, S. Lu & H. Qian, 1995. An overview of harmful algal bloom (red tide) occurrences along the coast of china and research upon them. In Morton, B., G. Xu, R. Zou, J. Pan & G. Cai (eds), The Marine Biology of the South China Sea II. World Publishing Corporation, Beijing, PRC: 107–110.Google Scholar
  37. Renk, H., J. Nakonieczny & S. Ochocki, 1988. Primary production in the Southern Baltic in 1985 and 1986 compared with long-term mean seasonal variation. Kieler Meeresforsch., Sonderh. 6: 203–209.Google Scholar
  38. Smayda, T. J., 1989. Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In Cosper, E. M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer Verlag, Berlin, Heidelberg, New York: 449–483.CrossRefGoogle Scholar
  39. Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York, Amsterdam, London: 29–40.Google Scholar
  40. Smayda, T. J. & A. W. White, 1990. Has there been a global expansion of algal blooms. If so, is there a connection with human activities? In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York, Amsterdam, London: 516–517.Google Scholar
  41. Smith, R. A., R. B. Alexander & M. G. Wolman, 1987. Water-quality trends in the nation’s rivers. Science 235: 1607–1615.PubMedCrossRefGoogle Scholar
  42. Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition — A case study for a deep nutrient-rich lake. Prog. Phycol. Res. 5: 124–178.Google Scholar
  43. Yanagi, T., 1988. Preserving the inland sea. Mar. Pollut. Bull. 19: 51–53.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • I. J. Hodgkiss
    • 1
  • K. C. Ho
    • 2
  1. 1.Department of Ecology and BiodiversityThe University of Hong KongHong Kong
  2. 2.School of Science and TechnologyThe Open Learning Institute of Hong KongHong Kong

Personalised recommendations