Skip to main content

Relationship between Large-, Meso-, and Small-Scale Field-Aligned Currents and their Current Carriers

  • Chapter
Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

Abstract

Carriers of the dayside large-scale field-aligned currents (FACs) are discussed. Since the gyro-radius of the current carriers are smaller than the size of small-scale FACs (a pair of upward and downward FACs associated with inverted-V potential structure as shown in Figure 1), the current carriers of large-scale FAC could be controlled by small-scale (and hence meso-scale) FACs. We restrict the discussion to only a few regions.

  1. (1)

    Although the current carries are electrons in most cases, the framework of the large-scale FAC system is sometimes determined by positive ions, especially in the cusp.

  2. (2)

    There is a dawn-dusk asymmetry in the relationship between the large-scale FACs and the current carriers. A substantial fraction of the Region-1 FAC is probably composed of many small-scale paired FACs which are associated with the inverted-V structure (see Figure 1), whereas the Region-2 FAC is carried by CPS electrons in the morning sector and by thermal electrons in the afternoon sector.

  3. (3)

    Meso-scale FAC is formed by individual ion injections, but it has no relation to the large-scale FACs even inside the cusp region. Thus the large-scale cusp FACs (and the cusp itself) are formed by a steady mechanism but not by the meso-scale injections such is FIEs. This rules out the FTE cusp model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, T. and Potemra, T.A. (1976a) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res. 81, 2165.

    Article  ADS  Google Scholar 

  2. Iijima, T. and Potemra, T.A. (1976b) Field-aligned currents in the dayside cusp observed by Triad, J. Geophys. Res. 81, 5971–5979.

    Article  ADS  Google Scholar 

  3. Potemra, T.A. (1994) Sources of large-scale Birkeland currents, in J.A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer process, Kluwer Academic Publishers, Dordrecht, pp. 3–27.

    Chapter  Google Scholar 

  4. Akasofu, S.-I. (1977) Physics of magnetospheric substorms,Reidel.

    Book  Google Scholar 

  5. Wilhjelm, J., Friis-Christensen, E., and Potemra, T.A. (1978) The relationship between ionospheric and field-aligned currents in the dayside cusp, J. Geophys. Res. 83, 5586–5594.

    Article  ADS  Google Scholar 

  6. Brekke, A., Doupnik, J.R., and Banks, P.M. (1974) Incoherent scatter measurements of E region conductivities and currents in the auroral zone, J. Geophys. Res. 79, 3773–3790.

    Article  ADS  Google Scholar 

  7. Levitin, A.E., Afonina, R.G., Belov, B.A., and Feldstein, Y.I. (1982) Geomagnetic variation and field-aligned currents at northern high-latitudes, and their relationship to the solar wind parameters, Phil. Trans. R. Soc. Lond. A304, 253–301.

    Article  ADS  Google Scholar 

  8. Friis-Christensen, E., Kamide, Y., Richmond, A.D., and Matsushita, S. (1985) Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland magnetometer data, J. Geophys. Res. 90, 1325–1338.

    Article  ADS  Google Scholar 

  9. Feldstein, Y.I. and Galperin, Yu.I. (1985) The auroral luminosity structure in the high-latitude upper atmosphere: its dynamics and relationship to the large-scale structure of the earth’s magnetosphere, Rev. Geophys. 23, 217.

    Article  ADS  Google Scholar 

  10. Burch, J.L., Reiff, P.H., Menietti, J.D., Heelis, R.A., Hanson, W.B., Shawhan, S.D., Shelley, E.G., Sugiura, M., Weimer, D.R., and Winningham, J.D. (1985) IMF By dependent plasma flow and birkeland currents in the dayside magnetosphere 1. dynamics explorer observations, J. Geophys. Res. 90, 1577–1593.

    Article  ADS  Google Scholar 

  11. Heppner, J.P. and Maynard, N.C. (1987) Empirical high-latitude electric field models, J. Geophys. Res. 92, 4467–4489.

    Article  ADS  Google Scholar 

  12. Blomberg, L.G. and Marklund, G.T. (1991) High-latitude convection patterns for various large-scale field-aligned current configurations, Geophys. Res. Lett. 18,717720.

    Article  Google Scholar 

  13. Elphinstone, R.D., Hearn, D., Murphree, J.S., Cogger, L.L., Johnson, M.L., and Vo, H.B. (1993) Some UV dayside auroral morphologies, in Auroral Plasma Dynamics, American Geophysical Union, Washington, 31–45.

    Chapter  Google Scholar 

  14. Sugiura, M. (1984) A fundamental magnetosphere-ionosphere coupling mode involving field-aligned currents as deduced from DE-2 observations, Geophys. Res. Lett. 11, 877–880.

    Article  ADS  Google Scholar 

  15. Weimer, D.R., Goertz, C.K., Gurnnet, D.A., Maynard, N.C., and Burch, J.L. (1985) Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions, J. Geophys. Res. 90, 7479.

    Article  ADS  Google Scholar 

  16. Potemra, T.A., Zanetti, L.J., Bythrow, P.F., Erlandson, R.E., Lundin, R., Marklund, G.T., Block, L.P. and Lindqvist, P.-A. (1988) Resonant geomagnetic field oscillations and Birkeland currents in the morning sector, J. Geophys. Res. 932661–2674.

    Article  ADS  Google Scholar 

  17. Ishii, M., Sugiura, M., Iyemori, T., and Slavin, J.A. (1992) Correlation between magnetic and electric fields in the field-aligned current regions deduced from DE-2 observations, J. Geophys. Res. 97, 13877.

    Article  ADS  Google Scholar 

  18. Knudsen, D.J., Kelley, M.C., and Vickerey, J.F. (1992) Alfvén waves in the auroral ionosphere: A numerical model compared with measurement, J. Geophys. Res. 97, 77.

    Article  ADS  Google Scholar 

  19. Marklund, G. (1993) Viking investigations of auroral electrodynamical processes, J. Geophys. Res., 98, 1691–1704, 1993.

    Google Scholar 

  20. Peterson, W.K., Abe, T., André, M., Engebretson, M.J., Fukunishi, H., Hayakawa, H., Matsuoka, A., Mukai, T. Persoon, A.M., Retterer, J.M., Robinson, R.M., Sugiura, M., Tsuruda, K., Wallis, D.D., and Yau, A.W. (1993) Observations of a transverse magnetic field perturbation at two altitudes on the equatorward edge of the magnetospheric cusp, J. Geophys. Res. 98,21463–21470.

    Article  ADS  Google Scholar 

  21. Lühr, H., Warnecke, J., Zanetti, L.J., Lindqvist, P.A., and Hughes, T.J. (1994) Fine structure of field-aligned current sheets deduced from spacecraft and ground-based observations: Initial Freja results, Geophys. Res. Lett. 21, 1883–1886.

    Article  ADS  Google Scholar 

  22. Fujii, R. and Iijima, T. (1987) The control of the ionospheric conductivities on large-scale birkeland current intensities under geomagnetic quiet conditions, J. Geophys. Res. 92, 4505–4513.

    Article  ADS  Google Scholar 

  23. Yamauchi, M. and Araki, T. (1989) The interplanetary magnetic field By-dependent field-aligned current in the dayside polar cap under quiet conditions, J. Geophys. Res. 94,2684–2690.

    Article  ADS  Google Scholar 

  24. Lu, G., Richmond, A.D., Emery, B.A. Reiff„ P.H., de la Beaujardiere, O., Rich, F.J., Denig, W.F., Kroehl, H.W., Lyons, L.R., Ruohoniemi, J.M., Friis-Christensen, E., Opgenoorth, H., Persson, M.A.L., Lepping, R.P., Rodger, A.S., Hughes, T., McEwin, A., Dennis, S., Morris, R., Burns, G., and Tomlinson, L. (1994) Interhemispheric asymmetry of the high-latitude ionospheric convection pattern, J. Geophys. Res. 99,6491–6510.

    Article  ADS  Google Scholar 

  25. Kamide, Y., Craven, J.D., Frank, L.A., Ahn, B.-H., and Akasofu, S.-I. (1986) Modeling substorm current systems using conductivity distributions inferred from DE auroral images, J. Geophys. Res. 91, 11235–11256.

    Article  ADS  Google Scholar 

  26. Iijima, T. and Shibaji, T. (1987) Global characteristics of northward IMF-associated (NBZ) field-aligned currents, J. Geophys. Res. 92, 2408–2424.

    Article  ADS  Google Scholar 

  27. Erlandson, R.E., Zanetti, L.J., Potemra, T.A., Bythrow, P.F., and Lundin, R. (1988) IMF By dependence of region 1 birkeland currents near noon, J. Geophys. Res. 93,9804–9814.

    Article  ADS  Google Scholar 

  28. Hoffman, R.A., Sugiura, M., Maynard, N.C., Candey, R.M., Craven, J.D., and Frank, L.A. (1988) Electrodynamic patterns in the polar region during periods of extreme magnetic quiescence, J. Geophys. Res. 93, 14515–14541.

    Article  ADS  Google Scholar 

  29. Murphree, J.S., Johnson, M.L., Cogger, L.L., and Hearn, D.J. (1994) Freja UV imager observations of spatially periodic auroral distortions, Geophys. Res. Lett. 21, 1887–1890.

    Article  ADS  Google Scholar 

  30. Yamauchi, M., Lundin, R., and Aparicio, B. (1992) Viking observation of the substorm current wedge, ESA SP 335, 495–497.

    Google Scholar 

  31. Marklund, G., Blomberg, L., Fälthammar, C.-G., and Lindqvist, P.-A. (1994) On the diverging electric fields associated with black aurora, Geophys. Res. Lett. 21, 1859–1962.

    Article  ADS  Google Scholar 

  32. Ohtani, S., Zanetti, L.J., Potemra, T.A., Baker, K.B., Ruohoniemi, J.M., and Lui, A.T.Y. (1994) Periodic longitudinal structure of field-aligned currents in the dawn sector: large-scale meandering of an auroral electrojet, Geophys. Res. Lett. 21, 18791882.

    Article  ADS  Google Scholar 

  33. Ohtani, S., Potemra, T.A., Newell, P.T., Zanetti, L.J., Iijima, T., Watanabe, M., Yamauchi, M., Elphinstone, R.D., de la Beaujardiere, O., and Blomberg, L.G. (1995) Simultaneous prenoon and postnoon observations of three field-aligned current systems from Viking and DMSP-F7, J. Geophys. Res. 100, 119–136.

    Article  ADS  Google Scholar 

  34. McDiarmid, I.B., Burrows, J.R., and Wilson, M.D. (1979) Large-scale magnetic field perturbations and particle measurements at 1400 km on the dayside, J. Geophys. Res. 84, 1431–1441.

    Article  ADS  Google Scholar 

  35. Bythrow, P.F., Potemra, T.A., and Hoffman, R.A. (1982) Observations of field-aligned currents, particles, and plasma drift in the polar cusps near solstice, J. Geophys. Res. 87, 5131–5139.

    Article  ADS  Google Scholar 

  36. Bythrow, P.F., Potemra, T.A., Erlandson, R.E., Zanetti, L.J., and M. Klumpar, D. (1988) Birkeland currents and charged particles in the high-latitude prenoon region: A new interpretation, J. Geophys. Res. 93, 9791–9803.

    Article  ADS  Google Scholar 

  37. Yamauchi, M., Lundin, R., and Woch, J. (1993a) The interplanetary magnetic field By effects on large-scale field-aligned currents near local noon: Contributions from cusp part and noncusp part, J. Geophys. Res. 98, 5761–5767.

    Article  ADS  Google Scholar 

  38. Woch, J., Yamauchi, M., Lundin, R., Potemra, T.A., and Zanetti, L.J. (1993) The low-latitude boundary layer at mid-altitudes: Relation to large-scale Birkeland currents, Geophys. Res. Lett. 20, 2251–2254.

    Article  ADS  Google Scholar 

  39. Andersson, L., Nilsson, H., and Wahlund, J.-E. (1997) Meso-scale structure in the cusp/cleft region, Phys. Chem. Earth, in press.

    Google Scholar 

  40. Anderson, H.R. and Vondrak, R.R. (1975) Observations of Birkeland currents at auroral latitudes, Rev. Geophys. Space Phy. 13, 243.

    Article  ADS  Google Scholar 

  41. Klupmar, D.M. (1979) Relationships between auroral particle distributions and magnetic field perturbations associated with field-aligned currents, J. Geophys. Res. 84, 6524–6532.

    Article  ADS  Google Scholar 

  42. Burch, J.L., Reiff, P.H., and Sugiura, M. (1983) Upward electron beams measured by DE-1: a primary source of dayside region-1 birkeland currents, Geophys. Res. Lett. 10, 753–756.

    Article  ADS  Google Scholar 

  43. Potemra, T.A., Zanetti, L.J., Erlandson, R.E., Bythrow, P.F., Gustafsson, G., Acuna, M.H., and Lundin, R. (1987) Observations of large-scale Birkeland currents with Viking, Goephys. Res. Lett. 14, 419–422.

    Article  ADS  Google Scholar 

  44. Ergun, R.E., Carlson, C.W., McFadden, J.P., Chaston, C., Delory, G.T., Peria, W., Mozer, F.S., Temerin, M., Elphic, R., Strangeway, R., Klumpar, D.M., Shelley, E.G., Peterson, W.K., Moebius, E., Kistler, L., Cattell, C., and Pfaff, R. (1997) Initial results from the FAST satellite: Solitary waves and AKR, Ann. Geophys. 15 Sup., 683.

    Google Scholar 

  45. Lundin, R., Woch, J., and Yamauchi, M. (1991) The present understanding of the cusp, ESA SP 330 83–95.

    ADS  Google Scholar 

  46. Woch, J. and Lundin, R. (1992) Signature of transient boundary layer processes observed with Viking, J. Geophys. Res. 97 1431–1447.

    Article  ADS  Google Scholar 

  47. Ohtani, S., Blomberg, L.G., Newell, P.T., Yamauchi, M., Potemra, T.A., and Zanetti, L.J. (1996) Altitudinal comparison of dayside field-aligned current signatures by Viking and DMSP-F7: Intermediate-scale FAC systems, J. Geophys. Res. 101, 15297–15310.

    Article  ADS  Google Scholar 

  48. Primdahl, F. and Spangslev, F. (1983) Does IMF By induce the cusp field-aligned current? Planet. Space Sci. 31 363–367.

    Article  ADS  Google Scholar 

  49. Clauer, C.R. and Banks, P.M. (1986) Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents: Observations and model simulation, J. Geophys. Res. 91 6959–6971.

    Article  ADS  Google Scholar 

  50. Knipp, D.J., Richmond, A.D., Emery, B., Crooker, N.U., de la Beaujardiere, O., Evans, D., and Kroehl, H. (1991) Ionospheric convection response to changing IMF direction, Geophys. Res. Lett. 18 721–724.

    Article  ADS  Google Scholar 

  51. Yamauchi M., Lundin, R., and Potemra, T. (1995) Dynamic response of the cusp morphology to the IMF changes: An example observed by Viking, J. Geophys. Res. 100, 7661–7670.

    Article  ADS  Google Scholar 

  52. Yamauchi, M. and Lundin, R. (1994) Classification of large-scale and meso-scale ion dispersion patterns observed by Viking over the cusp-mantle region, in J.A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer process, Kluwer Academic Publishers, Dordrecht, pp. 99–109.

    Chapter  Google Scholar 

  53. Goertz, C.K. (1984) Kinetic Alfvén waves on auroral filed lines, Planet. Space Sci. 32 1387–1392.

    Article  ADS  Google Scholar 

  54. Lysak, R.L. (1997) Propagation of Alfvén waves through the ionosphere, Phys. Chem. Earth, in press.

    Google Scholar 

  55. Lundin, R., Eliasson, L., Haerendel, G., Boehm, M., and Holback, B. (1994) Large-scale auroral plasma density cavities observed by Freja, Geophys. Res. Lett. 21 1903–1906.

    Article  ADS  Google Scholar 

  56. Winningham, D.J., Yasuhara, F., Akasofu, S.-I., and Heikkila, W.J. (1975) The latitudinal morphology of 10 eV to 10 keV electron fluxes during quiet and disturbed times in the 2100–0300 MLT sector, J. Geophys. Res. 80 3148.

    Article  ADS  Google Scholar 

  57. Kremser, G. and Lundin, R. (1990) Average spatial distributions of energetic particles in the midaltitude cusp/cleft region observed by Viking, J. Geophys. Res. 95 5753–5766.

    Article  ADS  Google Scholar 

  58. Newell, P.T. and Meng, C.-I. (1992) Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics, Geophys. Res. Lett. 19 609–612.

    Article  ADS  Google Scholar 

  59. Woch, J. and Lundin, R. (1993) The low-latitude boundary layer at mid-altitudes: Identification based on Viking hot plasma data, Geophys. Res. Lett. 20 979–982.

    Article  ADS  Google Scholar 

  60. Alfvén, H. and Fälthammar, C.G. (1963) Cosmical Electrodynamics, Fundamental Principles, Clarendon, Oxford.

    MATH  Google Scholar 

  61. Fridman, M. and Lemaire, J. (1980) Relationship between auroral electron fluxes and field-aligned electric potential difference, J. Geophys. Res. 85 664.

    Article  ADS  Google Scholar 

  62. Boehm, M., Paschmann, G., Clemmons, J., Höfner, H., Fremzel, R., Ertl, M., Haerendel, G., Hill, P., Lauche, H., Eliasson, L., and Lundin, R. (1994) The I’ESP electron spectrometer and correlator (F7) on Freja, Space Sci. Rev. 70,509–540.

    Article  ADS  Google Scholar 

  63. Pottelette, R., Malingre, M., Dubouloz, N., Aparicio, B., Lundin. R., Holmgren, G., and Marklund, G. (1990) High-frequency waves in the cusp/cleft regions, J. Geophys. Res. 95 5957–5971.

    ADS  Google Scholar 

  64. Thelin, B. and Lundin, R. (1990) Upflowing ionospheric ions and electrons in the cusp-cleft region, J. Geomag. Geoelectr. 42 753–761.

    Article  ADS  Google Scholar 

  65. Cowley, S.W.H., Morelli, J.P., and Lockwood, M. (1991) Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field, J. Geophys. Res. 96 5557–5564.

    Article  ADS  Google Scholar 

  66. Friis-Christensen, E., McHenry, M.A., Clauer, C.R., and Vennerstrom, S. (1988) Ionospheric traveling convection vortices observed near the polar cleft: a triggered response to sudden changes in the solar wind, Geophys. Res. Lett. 15 253–256.

    Article  ADS  Google Scholar 

  67. Lundin, R., Yamauchi, M., Woch, J., and Marklund, G. (1995) Boundary layer polarization and voltage in the 14 MLT region, J. Geophys. Res. 100 7587–7597.

    Article  ADS  Google Scholar 

  68. Smith, M.F. and Lockwood, M. (1990) The pulsating cusp, Geophys. Res. Leu. 17 1069–1072.

    Article  ADS  Google Scholar 

  69. Lockwood, M. (1994) Ionospheric signatures of pulsed magnetopause reconnection, in J.A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer process, Kluwer Academic Publishers, Dordrecht, pp. 229–243.

    Chapter  Google Scholar 

  70. Yamauchi, M. and Lundin, R. (1997) The wave-assisted cusp model: comparison to low-altitude observations, Phys. Chem. Earth, in press.

    Google Scholar 

  71. Potemra, T.A., Erlandson, R.E., Zanetti, L.J., Arnordy, R.L., Woch, J., and FriisChristensen, E. (1992) The dynamic cusp, J. Geophys. Res. 97 2835–2844.

    Article  ADS  Google Scholar 

  72. Lemaire, J. (1977) Impulsive penetration of filamentary plasma elements into the magnetospheres of the Earth and Jupiter, Planet. Space Sci. 25 887–890.

    Article  ADS  Google Scholar 

  73. Yamauchi, M., Woch, J., Lundin, R., Shapshak, M., and Elphinstone, R. (1993b) A new type of ion injection event observed by Viking, Geophys. Res. Lett. 20 795798.

    Article  ADS  Google Scholar 

  74. Southwood, D.J. (1987) The ionospheric signature of flux transfer event, J. Geophys. Res. 92 3207.

    Article  ADS  Google Scholar 

  75. Sato, T. and Iijima, T. (1979) Primary sources of large-scale Birkeland current, Space Sci. Rev. 24 347–366.

    Article  ADS  Google Scholar 

  76. Yamauchi, M., Lundin, R., and Lui, A.T.Y. (1993c) Vorticity equation for MHD fast waves in geospace environment, J. Geophys. Res. 98 13523–13528.

    Article  ADS  Google Scholar 

  77. Yamauchi, M. (1994) Numerical simulation of large-scale field-aligned current generation from finite-amplitude magnetosonic waves, Geophys. Res. Lett. 21 851854.

    Article  ADS  Google Scholar 

  78. Lee, L.C., Kan, J.R., and Akasofu, S.-I. (1985) On the origin of the cusp field-aligned currents, J. Geophys. 57 217–221.

    Google Scholar 

  79. Onsager, T.G. (1994) A quantitative model of magnetosheath plasma in the low latitude boundary layer, cusp and mantle, in J.A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer process,Kluwer Academic Publishers, Dordrecht, pp. 385–400.

    Chapter  Google Scholar 

  80. Zhou, X.-W. and Russell, C.T. (1997) The location of the high-latitude polar cusp and the shape of the surrounding magnetopause, J. Geophys. Res. 102 105–110.

    Article  ADS  Google Scholar 

  81. Fung, S.F., Eastman, T.E., Boardsen, S.A., and Chen, S.-H. (1997) High-altitude cusp positions samples by the Hawkewe satellite, Phys. Chem. Earth, in press.

    Google Scholar 

  82. Sandahl, I., Lundin, R., Yamauchi, M., Eklund, U., Safrankova, J., Nemecek, Z., Kudela, K., Lepping, R.P., Lin, R.P., Lutsenko, V.N., and Sauvaud, J.-A. (1997) Cusp and boundary layer observation by INTERBALL, Adv. Spcae Res., in press.

    Google Scholar 

  83. Zhou, X.-W., Russell, C.T., Le, G., and Tsyganenko, N. (1997) Comparison of observed and model magnetic fields at high altitudes above the polar cap, Geophys. Res. Lett. 24 1451–1454.

    Article  ADS  Google Scholar 

  84. Yamauchi, M. and Blomberg, L. (1997) Problems on mappings of the convection and on the fluid concept, Phys. Chem. Earth, in press.

    Google Scholar 

  85. Yamauchi, M. (1997) Discussion 3: On the convection and velocity filter, Phys. Chem. Earth, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamauchi, M., Lundin, R., Eliasson, L., Ohtani, S., Clemmons, J.H. (1998). Relationship between Large-, Meso-, and Small-Scale Field-Aligned Currents and their Current Carriers. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics