Skip to main content

Polar Observations of Cusp Electrodynamics: Evolution from 2- to 4-Cell Convection Patterns

  • Chapter
Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

Abstract

The dayside magnetosphere quickly responds to changes in the polarities of IMF B Y and/or B Z . Within a few minutes of the changes reaching the magnetopause, characteristic optical [1] and plasma convection signatures [2] appear in the ionospheric projection of the cusp. Global ionospheric convection patterns at high geomagnetic latitudes, however, represent a mixture of IMF conditions over the previous half hour. Maezawa [3] first reported observing magnetic perturbations during sustained periods of northward IMF whose explanation required sunward convection in the central polar cap. Electric and magnetic fields measured by the S3–2 [4]. Atmospheric Explorer [5] and MAGSAT [6] satellites suggested that with IMF B Z > 0 and B Y ≈ 0, a four-cell convection patterns evolves. This convection pattern consists of two cells in the polar cap, whose polarity is opposite to the adjacent, standard negative potential (clockwise) afternoon and positive (counter-clockwise) morning cells. The polar cap convection cells are driven by magnetic merging at the poleward boundary of the cusp [7]. The residual, standard-polarity pair of cells at auroral latitudes are weak and probably are related to the low latitude boundary layer (LLBL) [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandholt, P. E. (1991) Auroral electrodynamics at the cusp/cleft poleward boundary durin northward interplanetary magnetic field, Geophys. Res. Lett. 18, 805.

    Article  ADS  Google Scholar 

  2. Clauer, C. R., and Friis-Christensen, E. (1986) High-latitude electric fields and currents during strongly northward magnetic field: observations and model simulations, J. Geophys. Res. 91, 6959.

    Article  ADS  Google Scholar 

  3. Maezawa, K. (1976) Magnetospheric convection induced by positive and negative Z components of the interplanetary magnetic field: Quantitative analysis using polar cap magnetic field records, J. Geophys. Res. 81, 2289.

    Article  ADS  Google Scholar 

  4. Burke, W. J., Kelley, M. C., Sagalyn, R. C., Smiddy, M., and Lai, S. T. (1979) Polar cap electric field structures with northward interplanetary magnetic field, Geophys. Res. Lett. 6, 21.

    Article  ADS  Google Scholar 

  5. Reiff, P. H., and Heelis, R. A. (1994) Four cells or two? Are four cells really necessary, J. Geophys. Res . 99, 3955.

    Article  ADS  Google Scholar 

  6. Iijima, T., and Shibaji, T. (1984) Global characteristics of northward IMF-associated (NBZ) field-aligned currents, J. Geophys. Res. 89, 2408.

    Article  Google Scholar 

  7. Dungey, J. W. (1961) Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  8. Eastman T. E., Hones, E. W. Jr., Bame, S. J., and Asbridge, J. R. (1976) The magnetospheric boundary layer: site of plasma, momentum and energy transfer from the magnetosheath into the magnetosphere, Geophys. Res. Lett. 3, 685.

    Article  ADS  Google Scholar 

  9. Heppner J. P., and Maynard, N. C. (1987) Empirical high-latitude electric field models, J. Geophys. Res. 92, 4467.

    Article  ADS  Google Scholar 

  10. Burke, W. J., Basinska, E. M., Maynard, N. C., Hanson, W. B., Slavin, J. P., and Winningham, J. D. (1994) Polar cap potential distributions during periods of positive IMF B y and B z , J. Atmos. Terres. Phys. 56, 209.

    Article  ADS  Google Scholar 

  11. Greenwald, R. A., Bristow, W. A., Sofko, G. J., Senior, C., Cerisier, J.-C., and Szabo, A. (1995) Super dual auroral radar network radar imaging of dayside high-latitude convection under northward magnetic field: Toward resolving the distorted two-cell versus multicell controversy, J. Geophys. Res. 100, 19,661.

    Google Scholar 

  12. Weimer, D. R. (1996) A flexible, IMF dependent model of high latitude electric potentials having “space weather” applications, Geophys. Res. Lett. 23, 2549.

    Article  ADS  Google Scholar 

  13. Newell, P. T., Burke, W. J., Sanchez, E. R., Meng, C.-I., Greenspan, M. E., and Clauer, C. R. (1991) The low latitude boundary layer and the boundary plasma sheet at low altitude: prenoon precipitation regions and convection reversal boundaries, J. Geophys. Res. 96, 35.

    Article  ADS  Google Scholar 

  14. Reiff, P. H., Burch, J. L., and Spiro, R. W. (1980) Cusp proton signatures and the interplanetary magnetic field, J. Geophys. Res. 85, 5997.

    Article  ADS  Google Scholar 

  15. Iijima, T., and Potemra, T. A. (1976) Field-aligned currents in the dayside cusp observed by TRIAD, J. Geophys. Res. 81, 5971.

    Article  ADS  Google Scholar 

  16. Maynard, N. C., Burke, W. J., Weimer, D. R., Mozer, F. S., Scudder, J. D., Russell, C. T., Peterson, W. K., and Lepping, R. P. (1997) Polar observations of convection with northward IMF at dayside high latitudes, J. Geophys. Res., in press.

    Google Scholar 

  17. Tsyganenko, N. A. (1996) Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data based field models, in Third International Conference on Substorms (ICS-3), ESA SP-389, ESA Pub. Div., Noordwijk, The Netherlands, pp. 181–185.

    Google Scholar 

  18. Harvey, P., et al. (1995) The electric field instrument on the Polar satellite, in C. T. Russell (ed.), The Global Geospace Mission, Kluwer Academic Publishers, Dordrecht, pp. 583–596.

    Google Scholar 

  19. Russell,C. T., et al. (1995) The GGS/Polar magnetic fields investigation, in C. T. Russell (ed.), The Global Geospace Mission, Kluwer Academic Publishers, Dordrecht, pp. 563–582.

    Google Scholar 

  20. Scudder, J., et al. (1995) Hydra - A 3-dimensional electron and ion hot plasma instrument for the Polar spacecraft of the GGS mission, in C. T. Russell (ed.), The Global Geospace Mission, Kluwer Academic Publishers, Dordrecht, pp. 459–495.

    Google Scholar 

  21. Shelley, E. G., et al. (1995) The toroidal imaging mass-angle spectrometer (TIMAS) for the Polar mission, in C. T. Russell (ed.), The Global Geospace Mission, Kluwer Academic Publishers, Dordrecht, pp. 497–530.

    Google Scholar 

  22. Hardy, D. A., Gussenhoven, M. S., and Brautigam, D. (1989) A statistical model of auroral ion precipitation, J. Geophys. Res. 94, 370.

    Article  ADS  Google Scholar 

  23. Greenspan, M. E., Anderson, P. B., Pelagatti, J. M. (1986) Characteristics of the thermal plasma monitor for the Defense meteorological Satellite Program (DMSP) spacecraft S8–S10, AFGL-TR-86–0227, AFGL, Hanscom AFB, MA.

    Google Scholar 

  24. Siscoe, G. L., Lotko, W., Reiff, P. H., and Sonnerup, B. U. O. (1991) A high-latitude, low-latitude boundary layer model of the convection current system, J. Geophys. Res. 96, 3487.

    Article  ADS  Google Scholar 

  25. Chang, S.-W., et al. (1997) A comparison of a model for the theta aurora with observations from Polar, Wind, and SuperDARN, J. Geophys. Res., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maynard, N.C. et al. (1998). Polar Observations of Cusp Electrodynamics: Evolution from 2- to 4-Cell Convection Patterns. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics