Skip to main content

Large-Scale Electric Fields in the Dayside Magnetosphere

  • Chapter
Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

  • 288 Accesses

Abstract

Observations of auroral dynamics in the polar cusp region is used to derive regularities of the time and space distribution of large-scale electric fields at the magnetopause and in the polar ionosphere. The interpretation of experimental data is based on the supposition that the magnetopause electric field (the reconnection electric field) consists of the potential and vortex components which have different sources in the magnetopause vicinity, and different signatures in the polar ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pudovkin, M.I. and Golovchanskaya, I.V. (1989) On the formation of discrete auroral arcs, Planet. Space Sci 37 783–793.

    Article  ADS  Google Scholar 

  2. Kornilova, T.A., Pudovkin, M.I., and Starkov, G.V. (1990) Fine structure of aurorae in the vicinity of poleward boundary of the auroral bulge during breakups, Geom. Aeron 30 250–254 (Russian Edition).

    Google Scholar 

  3. Pudovkin, M.I., Semenov, V.S., Starkov, G.V., and Kornilova, T.A. (1991) On separation of potential and vortex parts of the magnetospheric electric field, Planet. Space Sci 39 563–568.

    Article  ADS  Google Scholar 

  4. Pudovkin, M.I., Zaitseva, S.A., Sandholt, P.E., and Egeland, A. (1992) Dynamics of aurorae in the cusp region and characteristics of the magnetic reconnection at the magnetopause, Planet. Space Sci 40 879–887.

    Article  ADS  Google Scholar 

  5. Pudovkin, M.I., Zaitseva, S.A., Sandholt, P.E., and Egeland, A. (1996) Relationship between the cusp aurora poleward motion velocity and solar wind parameters, in: Proc. Third International Conference on Substorms (ICS-3). Versailles, France, 1217 May 1996, ESA SP-389, pp. 737–742.

    Google Scholar 

  6. Petschek, H.E. (1964) Magnetic field annihilation, in: AAS/NASA Symp. of the Physics of Solar Flares, NASA Spec. Publ., SP-50, 425–439.

    Google Scholar 

  7. Vorobjev, V.G., Gnstafsson, G., Starkov, G.V., Feldstein, Ya.I., and Shevnina, N.F. (1975) Dynamics of day and night aurora during substorms, Planet. Space Sci, 23 269–278.

    Article  ADS  Google Scholar 

  8. Vorobjev, V.G., Zverev, V.L., and Leontiev, S.V. (1988) The structure of auroral luminosity in the midday sector Geom. Aeron 28 256–261 (Russian Edition).

    Google Scholar 

  9. Sandholt, P.E., Egeland, A., Holtet, J.A., Lybekk, B., Svenes, K., and Asheim, S. (1985) Large-and small-scale dynamics of the polar cusp, J. Geophys. Res 90 4407–4414.

    Article  ADS  Google Scholar 

  10. Sandholt, P.E., Deehr, C.S., Egeland, A., Lybekk, B., Viereck, R. and Romick, G.J. (1986) Signatures in the dayside aurora of plasma transfer from the magnetosheath J. Geophys. Res 91 10,063–10,079.

    ADS  Google Scholar 

  11. Sandholt, P.E., Lockwood, M., Oguti, T., Cowley, S.W.H., Freeman, K.S.C., Lybekk, B., Egeland, A., and Willis, D.M. (1990) Midday auroral breakup events and related energy and momentum transfer from the magnetosheath. J. Geophys. Res 95 1039–1060.

    Article  ADS  Google Scholar 

  12. Baker, K.B., Rodger, A.S., and Lu, G. (1997) HF-radar observations of the dayside magnetic merging rate: a Geospace Environment Modeling boundary layer campaign study, J. Geophys. Res 102 9603–9617.

    Article  ADS  Google Scholar 

  13. Kelley, M.C., Starr, J.A., and Mozer, F.C. (1971) Relationship between magneto-spheric electric fields and the motion of auroral forms, J. Geophys. Res 76 5269–5277.

    Article  ADS  Google Scholar 

  14. Lockwood, M., Moen, J., Cowley, S.W.H., Farmer, A.D., Lovhaug, U.P., Lühr, H., and Davda, V. N. (1993) Variability of dayside convection and motions of the cusp/cleft aurora, Geoph. Res. Letters 20, 1011–1014.

    Article  ADS  Google Scholar 

  15. Lockwood, M. (1994) Ionospheric signatures of pulsed magnetopause reconnection, in J. A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer processes, NATO ASI series C, vol. 425, Kluwer Acad. Press, pp. 229–243.

    Chapter  Google Scholar 

  16. Lockwood, M. and Davis, C.J. (1996) On the longitudinal extent of magnetopause reconnection pulses, Ann. Geophys. 14, 865–878.

    Article  ADS  Google Scholar 

  17. Horwitz, J.L., and Akasofu, S.-I. (1977) The response of the dayside aurora to sharp northward and southward transition of the interplanetary magnetic field and magnetospheric substorms, J. Geophys. Res 82, 2723–2734.

    Article  ADS  Google Scholar 

  18. Clauer, C.R. and Banks, P.M. (1986) Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents: observations and model simulation, J. Geophys. Res 91, 6959–6971.

    Article  ADS  Google Scholar 

  19. Svalgaard, L. (1968) Sector structure of the IMF and daily variation of the geomagnetic field at high latitudes, prepr. Det Danske Met. Inst., Charlottenlund, 11 p.

    Google Scholar 

  20. Mansurov, S.M. (1969) New evidences on the relationship between the IMF and the geomagnetic field, Geom. Aeron 11, 115–118 (Russian Edition).

    Google Scholar 

  21. Pudovkin, M.I., Zaitseva, S.A., Bazhenova, T.A., and Andrezen, V.G. (1985) Electric fields and currents in the Earth’s polar caps, Planet. Space Sci 33, 407–414.

    Article  ADS  Google Scholar 

  22. Reiff, P.H., Spiro, R.W., and Hill, T.V. (1981) Dependence of polar cap potential drop on interplanetary parameters, J. Geophys. Res 86, 7639–7648.

    Article  ADS  Google Scholar 

  23. Pudovkin, M.I., and Zaitseva, S.A. (1983) Electric fields in the polar cap, Geom. Aeron 23, 285–289 (Russian Edition).

    Google Scholar 

  24. Boyl, C.B., Reiff, P.H., and Hairston, M.R. (1997) Empirical polar cap potentials, J. Geophys. Res 102, 111–125.

    Article  ADS  Google Scholar 

  25. Pudovkin, M.I., and Semenov, V.S. (1986) The flux and transformation of the solar wind energy in the magnetosheath, Geom. Aeron 26, 887–891 (Russian Edition).

    Google Scholar 

  26. Perreault, P. and Akasofu, S.-I. (1978) A study of geomagnetic storms, Geoph. J. Roy. Astron. Soc 54, 547–573.

    Article  ADS  Google Scholar 

  27. Heikkila, W. (1997) The reconnection myth, EOS 78, 153–156.

    Article  ADS  Google Scholar 

  28. Bernikov, L.V. and Semenov, V.S. (1979) On the problem of an MGD flow around the magnetosphere. Geom. Aeron. 19, 671–675 (Russian Edition).

    Google Scholar 

  29. Starkov, G.V., Pudovkin, M.I., Smith, P.R., and Rijnbeek, R.P. (1996) Dynamics of aurora distribution of electric fields on day side during substorms, in: The 1st EGS Alfven Conference on Low-Altitude Investigation of Dayside Magnetospheric Boundary Processes. Abstracts, Kiruna, Sweden, p. 41.

    Google Scholar 

  30. Zverev, V.L., Pudovkin, M.I., and Starkov, G.V. (1994) The aurora motion and the electric fields during the initial substorm phase, Geom. Aeron 34, 49–55 (Russian Edition).

    Google Scholar 

  31. Kornilova, T.A., Kornilov, I.A., Pudovkin, M.I., and Starkov, G.A. (1997) Velocities of aurora motion and electric field distribution during active phase of substorms, Geom. Aeron (In press).

    Google Scholar 

  32. Pudovkin, M.I. (1994) A model of the magnetosheath and dayside magnetopause and their coupling to the cusp/cleft ionosphere, in J.A. Holtet and A. Egeland (eds.), Physical signatures of magnetospheric boundary layer processes, Kluwer Acad. Press, Netherlands, pp. 421–431.

    Chapter  Google Scholar 

  33. Cowley, S.W.H., Freeman, M.P., Lockwood, M., and Smith, M.F. (1991) The ionosphere signature of flux transfer events, in C.I. Barron (ed.), CLUSTER-dayside polar cusp, ESA SP-330, ESA, Nordvijk, The Netherlands, pp. 105–112.

    Google Scholar 

  34. Lockwood, M., Cowley, S.W.H., Sandholt, P.E., and Lovhaug, U.P. (1995) Causes of plasma bursts and dayside auroral transients: An evaluation of two models invoking reconnection pulses and changes in the Y-component of the magnetic field, J. Geophys. Res 100, 7613–7626.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pudovkin, M.I., Egeland, A. (1998). Large-Scale Electric Fields in the Dayside Magnetosphere. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics