Skip to main content

Compensatory neutral mutations and the evolution of RNA

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

There are many examples of RNA molecules in which the secondary structure has been strongly conserved during evolution, but the base sequence is much less conserved, e.g., transfer RNA, ribosomal RNA, and ribonuclease P. A model of compensatory neutral mutations is used here to describe the evolution of the base sequence in RNA helices. There are two loci (i.e., the two sides of the pair) with four alleles at each locus (corresponding to A, C., G, U). Watson-Crick base pairs (AU, CG, GC, and UA) are each assigned a fitness 1, whilst all other pairs are treated as mismatches and assigned fitness 1-s. A population of N diploid individuals is considered with a mutation rate of u per base. For biologically reasonable parameter values, the frequency of mismatches is always small but the frequency of the four matching pairs can vary over a wide range. Using a diffusion model, the stationary distribution for the frequency x of any of the four matching pairs is calculated. The shape depends on the combination of variables β = 8Nu2/9s. For small β, the distribution diverges at the two extremes, x = 0 and x = 1-z, where z is the mean frequency of mismatches. The population typically consists almost entirely of one of the four types of matching pairs, but occasionally makes shifts between the four possible states. The mean rate at which these shifts occur is calculated here. The effect of recombination between the two loci is to decrease the probability density at intermediate x, and to increase the weight at the extremes. The rate of transition between the four states is slowed by recombination (as originally shown by Kimura in a two-allele model with irreversible mutation). A very small recombination rate r ∼ u2/s is sufficient to increase the mean time between transitions dramatically. In addition to its application to RNA, this model is also relevant to the’ shifting balance’ theory describing the drift of populations between alternative equilibria separated by low fitness valleys. Equilibrium values for the frequencies of the different allele combinations in an infinite population are also calculated. It is shown that for low recombination rates the equilibrium is symmetric, but there is a critical recombination rate above which alternative asymmetric equilibria become stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N., 1989. The divergence of a polygenic system subject to stabilizing selection, mutation and drift. Genet. Res. Camb. 54: 59–77.

    Article  CAS  Google Scholar 

  • Barton, N. & S. Rouhani, 1993. Adaptation and the shifting balance. Genet. Res. Camb. 61: 57–74.

    Article  Google Scholar 

  • Brown, J.W., 1997. The Ribonuclease P database. Nucl. Acids Res. 25: 263–264. Database available at http://jwbrown.mbio.ncsu.edu/RNaseP/home.html

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Damberger, S.H. & R.R. Gutell, 1994. A comparative database of Group I intron structures. Nucl. Acids Res. 22: 3508–3510. Data base available at http://www.pundit.colorado.edu:8080/RNA.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., B.F. Lindemann, M. Tietze, R. Winkler-Oswatitsch, A. Dress, & A. von Haeseler, 1989. How old is the genetic code? Statistical geometry in sequence space provides an answer. Science 244: 672–679.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill & P. Schuster, 1989. The molecular quasispecies. Adv. Chem. Phys. 75: 149–263.

    Article  CAS  Google Scholar 

  • Forst, C.V., C. Reidys & J. Weber, 1995. Neutral networks as mod el landscapes for RNA secondary structure folding landscapes. Proceedings of the Third European Conference on Artificial Life. Lecture Notes in Artificial Intelligence, 929: 128–147.

    Google Scholar 

  • Gutell, R.R., 1994. Collection of small subunit ribosomal RNA structures. Nucl. Acids Res. 22: 3502–3507. Database available at http://www.pundit.colorado.edu:8080/RNA.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, A., 1985. Four simultaneously stable polymorphic equilibria in two-locus two-allele selection models. Genetics 109: 255–261.

    PubMed  CAS  Google Scholar 

  • Higgs, P.G., 1995. Thermodynamic properties of transfer RNA: a computational study. J. Chem. Soc. Faraday Transactions 91: 2531–2540.

    Article  CAS  Google Scholar 

  • Huynen, M., P.F. Stadler & W. Fontana, 1996. Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Nat. Acad. Sci. USA, 93: 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, S., 1975. General two-locus selection models: some objec tives, results and interpretations. Theor. Pop. Biol. 7: 364–398.

    Article  CAS  Google Scholar 

  • Kimura, M., 1985. The role of compensatory neutral mutations in molecular evolution. J. Genet. 64: 7–19.

    Article  CAS  Google Scholar 

  • Michalakis, Y., & M. Slatkin, 1996. Interaction of selection and recombination in the fixation of negative-epistatic genes. Genet. Res. Camb. 67: 257–269.

    Article  CAS  Google Scholar 

  • Morgan, S.R., & P.G. Higgs, 1996. Evidence for Kinetic Effects in the Folding of Large RNA Molecules. J. Chem. Phys. 105: 7152–7157.

    Article  CAS  Google Scholar 

  • Muse, S., 1995. Evolutionary analysis of DNA sequences subject to constraints on secondary structure. Genetics 139: 1429–1439.

    PubMed  CAS  Google Scholar 

  • Phillips, P.C., 1996. Waiting for a compensatory mutation: phase zero of the shifting balance process. Genet. Res. Camb. 67: 271–283.

    Article  CAS  Google Scholar 

  • Rousset, F., M. Pelandakis & M. Solignac, 1991. Evolution of compensatory substitutions through GU intermediate state in Drosophila rRNA. Proc. Nat. Acad. Sci. USA 88: 10032–10036.

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky, A., 1995. Estimating substitution rates in ribosomal RNA genes. Genetics 141: 771–783.

    PubMed  CAS  Google Scholar 

  • Sprinzl, M., C. Steegborn, F. Hubel & S. Steinberg, 1996. Com pilation of transfer RNA sequences and sequences of transfer RNA genes. Nucl. Acids Res. 24: 68–72. Database available at http://www.embl-heidelberg.de/pub/databases/trna

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S., A. Misch & M. Sprinzl, 1993. Compilation of tRNA sequences. Nucl. Acids Res. 21: 301. Database available at http://www.embl-heidelberg.de/pub/databases/trna

    Google Scholar 

  • Stephan, W., 1996. The rate of compensatory evolution. Genetics 144: 419–426.

    PubMed  CAS  Google Scholar 

  • Tillier, E.R.M., & R.A. Collins, 1995. Neighbour joining and maxi mum likelihood with RNA sequences: addressing the interdepen dence of sites. Mol. Biol. Evol. 12: 7–15.

    Article  CAS  Google Scholar 

  • Van de Peer, Y., J. Jansen, P. De Rijk, & R. De Wachter, 1997. Database on structure of small ribosomal subunit RNA. Nucl. Acids Res. 24: 114–116. Database available at http://rrna.uia.ac.be/ssu/index.html

    Google Scholar 

  • Wiehe, T., E. Baake & P. Schuster, 1995. Error propagation in reproduction of diploid organisms. J. Theor. Biol. 177: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. & N.R. Pace, 1993. Probing RNA structure, function and history by comparative analysis, pp. 91–117 in The RNA World, edited by R.F. Gesteland & J.F. Atkins. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Wright, S., 1977. Evolution and the Genetics of Populations, Vol. 3. University of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Higgs, P.G. (1998). Compensatory neutral mutations and the evolution of RNA. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics