Skip to main content

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 6))

  • 364 Accesses

Abstract

Against the general feeling that ‘CFD is solved’, I offer a few remarks from the trenches. When performing large-scale simulations of geometrically and physically complex flows, the notion of reliable, cost-effective, widely applicable and easy-to-use CFD still appears more as fiction than reality. The present monograph addresses some major areas where progress is urgently required. These areas are listed in the order a typical CFD run proceeds: model import/creation, grid generation, flow solvers, mesh adaptation and quality control. Finally, with a view towards the coming decade, code, data and project management are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AIAA, Proc. 12th AIAA CFD Conf., San Diego, CA, June 1995.

    Google Scholar 

  • Aftosmis, M.J., Berger, M.J. and Melton, J.E., “Adaptation and Surface Modeling for Cartesian Mesh Methods,” AIAA-95–1725-CP, 1995.

    Google Scholar 

  • Allwright, S., “Multiblock Topology Specification and Grid Generation for Complete Aircraft Configurations,” AGARD-CP-464, 11, 1990.

    Google Scholar 

  • Baker, T.J, T.J., “Three-Dimensional Mesh Generation by Triangulation of Arbitrary point Sets,” AIAA-CP-87–1124, 8th CFD Conference, Hawaii, 1987.

    Google Scholar 

  • Baker, T.J., “Developments and Trends in Three-Dimensional Mesh Generation,” Appl. Num. Math., Vol. 5, 1989, pp. 275–304.

    Article  MATH  Google Scholar 

  • Barth, T., “A 3-D Upwind Euler Solver for Unstructured Meshes,” AIAA-91–1548-CP, 1991.

    Google Scholar 

  • Batina, J.T., “Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes,” AIAA Journal, Vol. 28, No. 8, 1990, pp. 1381–1388.

    Article  ADS  Google Scholar 

  • Baum, J.D., Luo, H. and Löhner, R., “A New ALE Adaptive Unstructured Methodology for the Simulation of Moving Bodies,” AIAA-94–0414, 1994.

    Google Scholar 

  • Baum, J.D. and Löhner, R., “Numerical Simulation of Shock-Box Interaction Using an Adaptive Finite Element Scheme,” AIAA Journal, Vol. 32, No. 4, 1994, pp. 682–692.

    Article  ADS  Google Scholar 

  • Baum, J.D., Luo, H., Löhner, R., Yang, C., Pelessone, D. and Charman, C., “A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck,” AIAA-96–0795, 1996.

    Google Scholar 

  • Bayyuk, S., Powell, K. and vanLeer, B., “An Algorithm for Simulation of Flows with Moving Boundaries and Fluid-Structure Interactions,” First AFOSR Conf. on Dynamic Motion CFD, Rutgers, June 3–5, 1996.

    Google Scholar 

  • Berger, M.J. and LeVeque, R., “An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries,” AIAA-89–1930, 1989.

    Google Scholar 

  • Coquel, F. and Liou, M.-S., “Field by Field Hybrid Upwind Splitting Methods,” AIAA93–3302-CP, 1993.

    Google Scholar 

  • DataWare Inc. Objects Manual, 1996.

    Google Scholar 

  • Gaffney, R., Hassan, H. and Salas, M., “Euler Calculations for Wings Using Cartesian Grids,” AIAA-87–0356, 1987.

    Google Scholar 

  • Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

    MATH  Google Scholar 

  • Haug, E., Charlier, H., Clinckemaillie, J., DiPasquale, E., Fort, O., Lasry, D., Milcent, G., Ni, X., Pickett, A.K. and Hoffmann, R., “Recent Trends and Developments of Crashworthiness Simulation Methodologies and their Integration into the Industrial Vehicle Design Cycle; Proc. Third European Cars/Trucks Simulation Symposium (ASIMUTH), Oct. 28–30, 1991.

    Google Scholar 

  • Jameson, A., “Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows,” AIAA-93–3359, 1993.

    Google Scholar 

  • Jameson, A., “Optimal Aerodynamic Design Using CFD and Control Theory,” AIAA95–1729, 1995.

    Google Scholar 

  • Kutler, P., “A Perspective of Theoretical and Applied Computational Fluid Dynamics,” AIAA Journal, Vol. 23, No. 3, 1985, pp. 328–341.

    Article  MathSciNet  ADS  Google Scholar 

  • Liou, M.-S. and Steffen, C.J., “A New Flux Splitting Scheme,” J. Comp. Phys., Vol. 107, No. 23, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Liou, M.-S., “Progress Towards an Improved CFD Method: AUSM+,” AIAA-95–1701-CP, 1995.

    Google Scholar 

  • Löhner, R., Morgan, K., Peraire, J. and Vandati, M., “Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations,” Int. J. Num. Meth. Fluids, Vol. 7, 1987, pp. 1093–1109.

    Article  MATH  Google Scholar 

  • Löhner, R., “Some Useful Data Structures for the Generation of Unstructured Grids,” Comm. Appl. Num. Meth., Vol. 4, 1988, pp. 123–135.

    Article  MATH  Google Scholar 

  • Löhner, R. and Parikh, P., “Three-Dimensional Grid Generation by the Advancing Front Method,” Int. J. Num. Meth. Fluids, Vol. 8, 1988, pp. 1135–1149.

    Article  MATH  Google Scholar 

  • Löhner, R., “Three-Dimensional Fluid-Structure Interaction Using a Finite Element Solver and Adaptive Remeshing,” Computer Systems in Engineering, Vol. 1, Nos. 2–4, 1990, pp. 257–272.

    Article  Google Scholar 

  • Löhner, R. and Baum, J.D., “Adaptive H-Refinement on 3-D Unstructured Grids for Transient Problems,” Int. J. Num. Meth. Fluids, Vol. 14, 1992, pp. 1407–1419.

    Article  MATH  Google Scholar 

  • Löhner, R., “Some Useful Renumbering Strategies for Unstructured Grids,” Int. J. Num. Meth. Eng., Vol. 36, 1993, pp. 3259–3270.

    Article  MATH  Google Scholar 

  • Löhner, R., “Matching Semi-Structured and Unstructured Grids for Navier-Stokes Calculations,” AIAA-93–3348-CP, 1993.

    Google Scholar 

  • Löhner, R., “Edges, Stars, Superedges and Chains,” Comp. Meth. Appl. Mech. Eng., Vol. 111, 1994, pp. 255–263.

    Article  MATH  Google Scholar 

  • Löhner, R., Yang, C., Cebral, J., Baum, J.D., Luo, H., Pelessone, D. and Charman, C., “Fluid-Structure Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids,” AIAA-95–2259 [Invited], 1995.

    Google Scholar 

  • Löhner, R., “Extending the Range of Applicability and Automation of the Advancing Front Grid Generation Technique,” AIAA-96–0033, 1996.

    Google Scholar 

  • Löhner, R., “Surface Reconstruction from Clouds of Points,” Publication CIMNE 88, Universidad Politécnica de Catalunya, Barcelona, Spain, March 1996.

    Google Scholar 

  • Löhner, R., “Re-Gridding Surface Triangulations,” J. Comp. Phys., Vol. 126, 1996, pp. 1–10.

    Article  ADS  MATH  Google Scholar 

  • Luo, H., Baum, J.D. and Löhner, R., “Edge-Based Finite Element Scheme for the Euler Equations,” AIAA Journal, Vol. 32, No. 6, 1994, pp. 1183–1190.

    Article  ADS  MATH  Google Scholar 

  • Luo, H., Baum, J.D. and Löhner, R., “A Finite Volume Scheme for Hydrodynamic Free Boundary Problems on Unstructured Grids,” AIAA-95–0668, 1995.

    Google Scholar 

  • Luo, H., Baum, J.D. and Löhner, R., “A Hybrid Interface Capturing Method for Coinpressible Multi-Fluid Flows on Unstructured Grids,” AIAA-96–0416, 1996.

    Google Scholar 

  • Mavriplis, D., “Three-Dimensional Unstructured Multigrid for the Euler Equations,” AIAA-91–1549-CP, 1991.

    Google Scholar 

  • Meakin, R.L. and Suhs, N., “Unsteady Aerodynamic Simulations of Multiple Bodies in Relative Motion,” AIAA-89–1996, 1989.

    Google Scholar 

  • Meakin, R.L., “Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations,” AIAA-93–3350-CP, 1993.

    Google Scholar 

  • Mehrota, P., Saltz, J. and Voigt, R., (eds.), Unstructured Scientific Computation on Scalable Multiprocessors, MIT Press, 1992.

    Google Scholar 

  • Peraire, J., Peiro, J., Formaggia, L., Morgan, K. and Zienkiewicz, O.C., “Finite Element Euler Calculations in Three Dimensions,” Int. J. Num. Meth. Eng., Vol. 26, 1988, pp. 2135–2159.

    Article  MATH  Google Scholar 

  • Peraire, J., Morgan, K. and Peiro, J., “Unstructured Finite Element Mesh Generation and Adaptive Procedures for CFD,” AGARD-CP-464, 18, 1990.

    Google Scholar 

  • Peraire, J., Peiro, J. and Morgan, K., “A Three-Dimensional Finite Element Multigrid Solver for the Euler Equations,” AIAA-92–0449, 1992.

    Google Scholar 

  • Quirk, J.J., “An Alternative to Unstructured Grids for Computing Gas Dynamics Flows Around Arbitrarily Complex Two-Dimensional Bodies,” Comp. Fluids, Vol. 32, 1994, pp. 125–142.

    Article  Google Scholar 

  • Sellar, R. and Batill, St., “A Neural Network-Based, Concurrent Subspace Optimization Approach to MDO,” AIAA-96–0714, 1996.

    Google Scholar 

  • Simon, H, H., “Partitioning of Unstructured Problems for Parallel Processing,” NASA Ames Tech. Rep., RNR-91–008, 1991.

    Google Scholar 

  • Steinbrenner, J.P., Chawner, J.R. and Fouts, C.L., “A Structured Approach to Interactive Multiple Block Grid Generation,” AGARD-CP-464, 8, 1990.

    Google Scholar 

  • Thompson, J.F., “A Composite Grid Generation Code for General 3D Regions-The EAGLE Code,” AIAA Journal, Vol. 26, No. 3, 1988, p. 271ff.

    Article  ADS  Google Scholar 

  • Vidwans, A., Kallinderis, Y. and Venkatakrishnan, V., “A Parallel Load Balancing Algorithm for 3-D Adaptive Unstructured Grids,” AIAA-93–3313-CP, 1993.

    Google Scholar 

  • Weatherill, N.P., “Delaunay Triangulation in Computational ‘Fluid Dynamics,” Comp. Math. Appl., Vol. 24, Nos. 5/6, 1992, pp. 129–150.

    Article  MATH  Google Scholar 

  • Weatherill, N.P., Hassan, O. and Marcum, D.L, D.L., “Calculation of Steady Compressible Flowfields with the Finite Element Method,”f AIAA-93–0341, 1993.

    Google Scholar 

  • Williams, D., “Performance of Dynamic Load Balancing Algorithms for Unstructured Grid Calculations,” CalTech Rep. C3P913, 1990.

    Google Scholar 

  • Yee, H.C., Sweby, P.K. and Griffiths, D.F., “Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. I. The Dynamics of Time Discretization and its Implications for Algorithm Development in Computational Fluid Dynamics,” J. Comp. Phys., Vol. 97, 1991, pp. 249–310.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yee, H.C. and Sweby, P.K., “Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. II. Global Asymptotic Behaviour of Time Discretizations,” Comp. Fluid Dyn., Vol. 4, 1995, pp. 219–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Löhner, R. (1998). On Some Outstanding Issues in CFD (1996). In: Venkatakrishnan, V., Salas, M.D., Chakravarthy, S.R. (eds) Barriers and Challenges in Computational Fluid Dynamics. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5169-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5169-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6173-5

  • Online ISBN: 978-94-011-5169-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics