Skip to main content

A Promising Marriage Between Theory and Experiment: Density Functional Method Versus Mass Spectrometry

  • Chapter
Selected Topics in Mass Spectrometry in the Biomolecular Sciences

Part of the book series: NATO ASI Series ((ASIC,volume 504))

Abstract

The reliability of gaussian density functional method in reproducing and predicting a number of gas-phase thermochemical properties, that are currently obtained experimentally with modern mass spectrometry techniques, is shown through some molecular computations on systems including simple diatomics, amino acids and nucleic acid bases. The gas-phase thermochemical determinations concern:

  • Proton affinities

  • Affinities for metal ions

  • Absolute basicities and acidities

Structural characterizations include:

  • Ion structures and potential energy surfaces

  • Preferred attach sites for proton and metal ions.

Comparisons with experimental data reveal a good agreement and open a new perspective for density functional based methods that can be used closely with modern mass spectrometry methodologies in order to complete gas-phase thermochemical data and characterize better simple and complex chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. H. Thomas, Proc. Cambridge Phil. Soc. 23 (1926) 542.

    Article  Google Scholar 

  2. E. Fermi, Z. Phys. 48 (1926) 542.

    Google Scholar 

  3. P. Hohenberg and W. Kohn, Phys. Rev. 136, (1964) B864.

    Article  Google Scholar 

  4. W. Kohn and L. J. Sham, Phys. Rev. A140, (1965) 1133.

    Article  Google Scholar 

  5. J. C. Slater, Phys. Rev. 81 (1951)385.

    Article  CAS  Google Scholar 

  6. O. Gunnarson, M. Jonson and B. I. Lundqvist, Phys. Rev. B20, (1979) 3136.

    Google Scholar 

  7. J. P. Perdew and A. Zunger, Phys. Rev. B23, (1981) 5058.

    Google Scholar 

  8. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, (1980) 1200.

    Article  CAS  Google Scholar 

  9. J. P. Perdew and Y. Wang, Phys. Rev. B33, (1986) 8800.

    Google Scholar 

  10. J. P. Perdew, Phys. Rev. B33, (1986) 8822.

    Google Scholar 

  11. A. D. Becke, Phys. Rev. A38, (1988) 3098

    Google Scholar 

  12. A. D. Becke, J. Chem. Phys. 88, (1988) 2547.

    Article  CAS  Google Scholar 

  13. J. P. Perdew and Y. Wang, Phys. Rev. B33, (1986) 8800.

    Google Scholar 

  14. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B45 (1992) 13244.

    Google Scholar 

  15. R. Parr, and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, NY, 1989).

    Google Scholar 

  16. N. March, Electron Density Theory of Atoms and Molecules; (Academic Press, New York, 1991).

    Google Scholar 

  17. R. O. Jones and O. Gunnarson, Rev. Mod. Physics 61, (1990) 1280.

    Google Scholar 

  18. T. Ziegler, Chem. Rev. 91, (1990) 651.

    Article  Google Scholar 

  19. J. Labanowski and J. Andzelm (eds.) Density Functional Methods n Chemistry (Springer Verlag: NY, 1991).

    Google Scholar 

  20. D. R. Salahub and N. Russo (eds.) Metal Ligand Interaction. From Atoms, to Clusters, to Surfaces (Kluwer: Dordrecht, 1992).

    Google Scholar 

  21. J. M. Seminario and P. Politzer (eds.) Density Functional Theory: a Tool for Chemistry (Elsevier, New York, 1995).

    Google Scholar 

  22. N. Russo and D. R. Salahub (eds.) Metal Ligand Interaction: Structure and Reactivity (Kluwer: Dordrecht, 1995).

    Google Scholar 

  23. D. P. Chong (ed) Recent Advances in Density Functional Methods. Vol 1 (World Scientific, Singapore, 1995).

    Google Scholar 

  24. V. Malkin, O. L. Malkina, M. E. Casida and D. R. Salahub, J. Am. Chem. Soc. 116 (1994) 5898.

    Article  CAS  Google Scholar 

  25. A. M. Koster, P. Calaminici and N. Russo, Phys. Rev. A 53(1996) 3865.

    Google Scholar 

  26. T. Mineva, N. Russo and M. Toscano, Int. J. Quantum Chem. 56, (1995) 663.

    Article  CAS  Google Scholar 

  27. N. Russo, E. Sicilia and M. Toscano, J. Chem. Phys. 97, (1992) 5031.

    Article  CAS  Google Scholar 

  28. G. De Luca, N. Russo, E. Sicilia and M. Toscano. J. Chem. Phys. 105 (1996) 3206.

    Article  Google Scholar 

  29. P. Kebarle, Ann. Rev. Phys. Chem. 28 (1979) 445 and refereces cited therein.

    Article  Google Scholar 

  30. R. G. Cooks, J. S. Patrick, T. Kotiaho and S. A. McLuckey, Mass Spectrom. Rev. 13 (1994) 287 and references cited therein.

    Article  CAS  Google Scholar 

  31. A. St. Amant, PhD Thesis, Université de Montreal, 1991.

    Google Scholar 

  32. D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47 (1981) 446

    Article  CAS  Google Scholar 

  33. D. C. Langreth and M. J. Mehl, Phys. Rev. B28 (1983) 1809; erratum B29, 2310.

    Google Scholar 

  34. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem. 70, (1992) 560.

    Article  CAS  Google Scholar 

  35. S. W. Benson, Thermochemical Kinetics, (John Wiley & Sons, New York, 1976).

    Google Scholar 

  36. F. Cacace and M. Speranza, Science 265 (1994) 208.

    Article  CAS  Google Scholar 

  37. C. Meredith, G. E. Quelch and H. F. Schaefer III, J. Am. Chem. Soc. 113 (1991) 1187.

    Article  Google Scholar 

  38. G. Winnewisser and E. Herbst, Rep. Prog. Phys. 56 (1993) 1209.

    Article  CAS  Google Scholar 

  39. S.G. Lias, J.F. Liebman and R.D. Levine, J. Phys. Chem. Ref. Data 13 (1984) 695.

    Article  CAS  Google Scholar 

  40. R.A.J. O’Hair, M. Krempp, R. Damrauer, C.H. DePuy Inorg. Chem. 1992, 31, 2092.

    Google Scholar 

  41. R. Glaser, C. J. Horan and R. D. Levine, J. Phys. Chem. 97 (1993) 1835.

    Article  CAS  Google Scholar 

  42. Y-N. Su, M-S. Tsai and S-Y. Chu, Int. J. Quantum Chem. 59 (1996) 487.

    Article  CAS  Google Scholar 

  43. P. J. A. Ruttink, P. C. Burgers and J. K. Terlouw, Chem. Phys. Lett. 229 (1994) 495.

    Article  CAS  Google Scholar 

  44. I. A. Topol, S. K. Burt, N. Russo and M. Toscano, to be published.

    Google Scholar 

  45. N. Russo, M. Toscano, A. Grand and F. Jolibois, submitted.

    Google Scholar 

  46. S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin and W.G. Mollard, J. Phys. Chem. Ref. Data suppl. 1, 17 1988.

    Google Scholar 

  47. M. Meot-Ner and W. Sieck, J. Am. Chem. Soc. 113 (1991) 4448.

    Article  CAS  Google Scholar 

  48. M. J. Locke and R. T. Mc Iver, J. Am. Chem. Soc. 105 (1983) 4226.

    Article  CAS  Google Scholar 

  49. G. S. Gorman, J. P. Speir, C. A. Turner and I. J. Amster, J. Am. Chem. Soc. 114 (1992) 3986.

    Article  CAS  Google Scholar 

  50. X. Li and A. G. Harrison, Org. Mass Spectrometry 28 (1993) 366.

    Article  CAS  Google Scholar 

  51. M. Meot-Ner, E. P. Hunter and F. H. Field, J. Am. Chem. Soc. 101 (1979) 686.

    Article  CAS  Google Scholar 

  52. A. Liguori, F. Greco, G. Sindona and N. Uccella, J. Am. Chem. Soc. 112 (1990) 9092.

    Article  Google Scholar 

  53. G. Bojesen and T. Breindahl, J. Chem. Soc. Perkins Trans. 2 (1994) 1029.

    Article  Google Scholar 

  54. K. Isa, T. Omote and M. Amaya, Org. Mass Spectrom. 25 (1990) 620.

    Article  CAS  Google Scholar 

  55. Z. Wu and C. Fenselau, Rapid Commun. Mass Spectrom. 6 (1992) 403;

    Article  CAS  Google Scholar 

  56. Z. Wu and C. Fenselau, J. Am. Soc. Mass Spectrom. 3 (1993) 863.

    Article  Google Scholar 

  57. K. Zhang, D. M. Zimmerman, A. Chung-Phillips and C. J. Cassady, J. Am. Chem. Soc. 115 (1993) 10812.

    Article  CAS  Google Scholar 

  58. L. R. Wright and R. F. Borkman, J. Am. Chem. Soc. 102, (1980) 6207.

    Article  CAS  Google Scholar 

  59. C. Colominas, F. J. Luque and M. Orozco, J. Am. Chem. Soc. 118 (1996) 6811.

    Article  CAS  Google Scholar 

  60. A. M. Schmiedekamp, I. A. Topol, S. K. Burt, H. Razafinjanahary, H. Chermette, T. Pfaltzgraff and C. J. Michejda, J. Computat. Chem. 15 (1994) 875.

    Article  CAS  Google Scholar 

  61. B.J. Smith and L. Radom, J. Phys. Chem. 99 (1995) 6468.

    Article  CAS  Google Scholar 

  62. B.J. Smith and L. Radom, J. Phys. Chem. 99 (1995) 6468.

    Article  CAS  Google Scholar 

  63. M. Toscano, to be published.

    Google Scholar 

  64. A. K. Chandra and A. Goursot, J. Phys. Chem. 100 (1996) 11596.

    Article  CAS  Google Scholar 

  65. E. I. Proynov, E. Ruiz, A. Vela and D. R. Salahub, Int. J. Quantum Chem., Quantum Chem. Symp. 29 (1995) 61.

    Article  CAS  Google Scholar 

  66. I. A. Topol, S. K. Burt, N. Russo and M. Toscano, submitted.

    Google Scholar 

  67. J. E. Bartmess and R. T. McGiver in Gas Phase Ion Chemistry M. T. Bowers Ed.(Academic Press: New York, 1992, Vol. 2).

    Google Scholar 

  68. G. Boand, R. Houriet and T. J. Gaumann, J. Am. Chem. Soc. 105 (1983) 2203

    Article  CAS  Google Scholar 

  69. R. A. J. O’Hair, J. H. Bowie and S. Gronert, Int. J. Mass Spectrom. Ion Processes, 117 (1992) 23.

    Article  Google Scholar 

  70. B. A. Cerda and C. Wesdemiotis, 42nd ASMS Conference on Mass Spectrometry and Allied Topics, Chicago, IL, June 1994.

    Google Scholar 

  71. G. Bojesen, T. Breindhal and U. Andersen, Org. Mass Spectrom. 28 (1993) 1448.

    Article  CAS  Google Scholar 

  72. B. A. Cerda and C. Wesdemiotis, J. Am. Chem. Soc., submitted.

    Google Scholar 

  73. A. Grand, N. Russo and M. Toscano, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marino, T., Russo, N., Sicilia, E., Toscano, M. (1997). A Promising Marriage Between Theory and Experiment: Density Functional Method Versus Mass Spectrometry. In: Caprioli, R.M., Malorni, A., Sindona, G. (eds) Selected Topics in Mass Spectrometry in the Biomolecular Sciences. NATO ASI Series, vol 504. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5165-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5165-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6171-1

  • Online ISBN: 978-94-011-5165-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics