Skip to main content

Passively Mode-Locked Semiconductor Lasers Stabilized by Subharmonic Electrical Injection and Their Application to Millimeter Wave Photonics

  • Conference paper
New Trends in Optical Soliton Transmission Systems

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 5))

Abstract

A review is presented, based on our experimental and theoretical works, of mode-locked monolithic semiconductor lasers with optical pulse train output stabilized by the subharmonic electrical injection and their performance in the millimeter wave photonic application. The following issues are emphasized: (1) the novel method of pulse train stabilization and its mechanism, (2) the application of a mode-locked semiconductor laser as an optical mm-wave oscillator and (3) the unique functionality in the compact optical mm-wave transmitter applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa, H., Polifko, D., and Banba, S.: Millimeter-wave fiber optic systems for personal radio communication, IEEE Trans. Microwave Theory Tech., 40, (1992), pp. 2285–2292.

    Article  Google Scholar 

  2. Komaki, S., Tsukamoto, K., Hara, S., and Morinaga, N.: Proposal of fiber and radio extension link for future personal communications, Microwave and Optical Technol. Lett., 6, (1993), pp. 55–59.

    Article  Google Scholar 

  3. O’Reilly, J., and Lane, P.: Remote delivery of video services using mm-wave and optics, IEEE J. Lightwave Technol., 12, (1994), pp. 369–375.

    Article  Google Scholar 

  4. Lau, K. Y.: Short pulse and high frequency signal generation in semiconductor lasers, IEEE J. Lightwave Technol., 7, (1989), pp. 400–419.

    Article  CAS  Google Scholar 

  5. Weisser, S., Larkins, E. C., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Maier, M., Ralston, J. D., Romero, B., Sah, R. E., Schfelder, A., and Rosenzweig, J.: CW direct modulation bandwidths up to 40 GHz in short-cavity Ino.ssGao.65As/GaAs MQW lasers with undoped active regions, Proc. 21st Eur. Conf. on Opt. Comm. (ECOC ‘85), Th.B.3.3, pp.1015–1018, Brussels, 1995.

    Google Scholar 

  6. Nagarajan, R., Levy, S., Mar, A., and Bowers, J. E.: Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated 1 ight, IEEE Photon. Technol. Lett., 5, (1993), pp. 4–6.

    Article  Google Scholar 

  7. Georges, J. B., Kiang, M.-H., Heppell, K., Sayed, M., and Lau, K. Y.: Optical transmission of narrow-band millimeter-wave signals by resonant modulation of monolithic semiconductor lasers, IEEE Photon. Technol. Lett., 6, (1994), pp. 568–570.

    Article  Google Scholar 

  8. Tucker, R. S., Koren, U., Raybon, G., Burrus, C.A., Miller, B.I., Koch, T. L., G.,Eisenstein, and Shahar, A.: 40 GHz active mode-locking in a 1.5 pm monolithic extended-cavity laser, Electron. Lett., 25, (1989), pp. 621–622.

    Article  Google Scholar 

  9. Sato, K., Kotaka, I., Kondo, Y., and Yamamoto, M.: Active mode locking at 50 GHz repetition frequency by half-frequency modulation of monolithic semiconductor lasers integrated with electroabsorption modulators, Appl. Phys. Lett., 69, (1996), pp. 2626–2628.

    Article  CAS  Google Scholar 

  10. Noguchi, K., Miyazawa, H., and Mitomi, O.: 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30, (1994), pp. 949–951.

    Article  Google Scholar 

  11. Chernikov, S. V., Taylor, J. R., Mamyshev P. V., and Dianov, E. M.: Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers, Electron. Lett., 28, (1992), pp. 931–932.

    Article  Google Scholar 

  12. Chernikov, S. V., Taylor, J. R., and Kashyap, R.: Integrated all optical fiber source of multigigahertz soliton pulse train, Electron. Lett., 29, (1993), pp. 1788–1789.

    Article  CAS  Google Scholar 

  13. Swanson, E. A., Chinn, S. R., Hall, K., Rauschenbach, K. A., Bondurant, R. S., and Miller, J.W.: 100-GHz soliton pulse train generation using soliton compression of two phase side bands from a single DFB laser, IEEE Photon. Technol. Lett., 6, (1994), pp. 1194–1196.

    Article  Google Scholar 

  14. Wake, D., Lima, C. R., and Davies, P. A.: Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser, IEEE Trans. Microwave Theory Tech., 43, (1995), pp. 2270–2276.

    Article  Google Scholar 

  15. Lau, K. Y.: Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (100 GHz) by mode-locking, IEEE J. Quantum Electron., 26, (1990), pp. 251–261.

    Article  Google Scholar 

  16. Sanders, S., Eng, L., Paslaski, J., and Yariv, A.: 108 GHz passive mode locking of a multiple quantum well semiconductor laser with an intracavity absorber, Appl. Phys. Lett., 56, (1990), pp. 310–311.

    Article  CAS  Google Scholar 

  17. Martins-Filho, J. F., Avrutin, E. A., Ironside, C. N., and Roberts, J. S.: Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory, IEEE J. Sel. Topics Quantum Electron., 1, (1995), pp. 539–551.

    Article  CAS  Google Scholar 

  18. Chen, Y.-K., and Wu, M.C.: Monolithic colliding pulse mode-locked quantum-well lasers, IEEE J. Quantum Electron., 28, (1992), pp. 2176–2185.

    Article  Google Scholar 

  19. Arahira, S., Oshiba, S., Matsui, Y., Kunii, T., and Ogawa, Y.: Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode, Opt. Lett., 19, (1994), pp. 834–836.

    Article  CAS  Google Scholar 

  20. Arahira, S., Matsui, Y., and Ogawa, Y.: Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes, IEEE J. Quantum Electron., 32, (1996), pp. 1211–1224.

    Article  CAS  Google Scholar 

  21. Kim, D. Y., Pelusi, M. D., Ahmed, Z., Novak, D., Liu, H. F., and Ogawa, Y.: Ultra-stable millimeter-wave signal generation using hybrid mode-locking of a monolithic DBR laser, Electron. Lett., 31, (1995), pp. 733–734.

    Article  Google Scholar 

  22. Arahira, S., and Ogawa, Y.: Synchronous mode-locking of passively mode-locked semiconductor laser diodes by using optical short pulses repeated at subharmonics of the cavity roundtrip frequencies, IEEE Photon. Technol. Lett.,8 (1996), pp.191–193.

    Article  Google Scholar 

  23. Wang, X., Yokoyama, H., and Shimizu, T.: Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection, IEEE Photon. Technol. Lett., 8, (1996), pp. 617–619.

    Article  Google Scholar 

  24. Hoshida, T., Liu, H. F., Daza, M.R.H., Tsuchiya, M., Kamiya, T., and Ogawa, Y.: Generation of 33 GHz stable pulse trains by subharmonic electrical modulation of a monolithic passively mode-locked semiconductor laser, Electron. Lett., 32, (1996), pp. 572–573.

    Article  CAS  Google Scholar 

  25. Hoshida, T., Liu, H. F., Tsuchiya, M., Ogawa, Y., and Kamiya, T.: Extremely low-amplitude modulation in a subharmonically hybrid mode-locked monolithic semiconductor laser, IEEE Photon. Technol. Lett., 8, (1996), pp. 1160–1163.

    Article  Google Scholar 

  26. Hoshida, T., Liu, H. F., Tsuchiya, M., Kamiya, T., and Ogawa, Y.: Locking Char-acteristics of a Subharmonically Hybrid Mode-locked Multisection Semiconductor Laser, IEEE Photon. Technol. Lett., 8, (1996) pp.1600–1602.

    Article  Google Scholar 

  27. Hoshida, T., Liu, H. F., Tsuchiya, M., Ogawa, Y., and Kamiya, T.: Subharmonic Hybrid Mode-Locking of a Monolithic Semiconductor Laser, IEEE J. of Selected Topics in Quantum Electron., 2, (1996), pp.514–522.

    Article  CAS  Google Scholar 

  28. Liu, H. F., Arahira, S., Kunii, T., and Ogawa, Y.: Generation of wavelength tunable transform-limited pulses from a monolithic passively mode-locked distributed Bragg reflector semiconductor laser, IEEE Photon. Technol. Lett., 7,(1995), pp.1139–1141.

    Article  Google Scholar 

  29. Ahmed, Z., Novak, D., Waterhouse, R. B., and Liu, H. F.: Optically fed millimetre-wave (37 GHz) transmission system incorporating a hybrid mode-locked semiconductor laser,: Electron. Lett.,32, (1996), pp.1790–1792.

    Article  Google Scholar 

  30. Noël, L., Marcenac, D., and Wake, D.: 120 Mbit/s QPSK radio-fibre transmission over 100 km of standard fibre at 60 GHz using a master/slave i njection-locked DFB laser source, Electron. Lett.,32, (1996), pp.1895–1897.

    Article  Google Scholar 

  31. Schmuck, H.: Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion, Electron. Lett.,31, (1995), pp.1848–1849.

    Article  Google Scholar 

  32. Park, J., Elrefaie, A. F., and Lau, K. Y.: 1550-nm transmission of digitally modulated 28-GHz subcarriers over 77 km of nondispersion shifted fiber, IEEE Photon. Technol. Lett., 9, (1997), pp.256–258.

    Article  Google Scholar 

  33. Kato, K., Kozen, A., Muramoto, Y., Itaya, Y., Nagatsuma, T., and Yaita, M.: 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-pm wavelength, IEEE Photon. Technol. Lett., 6, (1994) , pp.719–721.

    Article  Google Scholar 

  34. Georges, J. B., Lux, R. A., Yeung, S. P., Lau, K. Y., and Chang, W.: Simultaneous fiber-optic transport and RF phase control of narrow-band millimeter-wave signals using multicontact monolithic semiconductor lasers, IEEE Photon. Technol. Lett.,8, (1996), pp.953–955.

    Article  Google Scholar 

  35. Adler, R.: A study of locking phenomena in oscillators, Proc. of the I.R.E. and Waves and Electronics, 34, (1946), pp.351–357.

    Google Scholar 

  36. Liu, H. F., Arahira, S., Kunii, T., and Ogawa, Y.: Frequency-tunable millimetre-wave signal generation using a monolithic passively mode-locked semiconductor laser, Electron. Lett.,32, (1996), pp.740–741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tsuchiya, M., Hoshida, T., Kamiya, T. (1998). Passively Mode-Locked Semiconductor Lasers Stabilized by Subharmonic Electrical Injection and Their Application to Millimeter Wave Photonics. In: Hasegawa, A. (eds) New Trends in Optical Soliton Transmission Systems. Solid-State Science and Technology Library, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5141-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5141-2_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6161-2

  • Online ISBN: 978-94-011-5141-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics