Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 512))

  • 307 Accesses

Abstract

Application of molecular biology to study the respiratory systems in bacteria has revealed the existence of a large superfamily of homologous haem-copper cytochrome oxidases [1–5]. There are several links between denitrification and oxygen-based respiration. The first oxidase may have evolved from a homologous denitrification enzyme, nitric oxide reductase [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castresana, J., Lübben, M., Saraste, M. and Higgins, D.G. (1994) Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen, EMBO J. 13, 2516–2525.

    CAS  Google Scholar 

  2. Castresana, J. and Saraste, M. (1995) Evolution of energetic metabolism: The respiration-early hypothesis, Trends Biochem. Sci. 20, 443–448.

    Article  CAS  Google Scholar 

  3. Brown, S., Moody, A.J., Mitchell, R. and Rich, P.R. (1993) Binuclear centre structure of terminal protonmotive oxidases, FEBS Lett. 316, 216–223.

    Article  CAS  Google Scholar 

  4. Garcia-Horsman, J.A., Barquera, B., Rumbley, J., Ma, J. and Gennis, R.B. (1994) The superfamily of haem-copper respiratory oxidases, J. Bacteriol. 176, 3113–3119.

    Google Scholar 

  5. Trumpower, B.L. and Gennis, R.B. (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration, Annu. Rev. Biochem. 63, 675–716.

    Article  CAS  Google Scholar 

  6. Schäfer, G. (1996) Bioenergetics of the archaebacterium Sulfolobus, Biochim. Biophys. Acta 1277, 163–200.

    Article  Google Scholar 

  7. Lübben, M. (1995) Cytochromes of archaeal electron transfer chains, Biochim. Biophys. Acta 1229, 1–22.

    Article  Google Scholar 

  8. Castresana, J., Lübben, M. and Saraste, M. (1995) New archaebacterial genes coding for redox proteins: Inplications for the evolution of aerobic metabolism, J. Mol. Biol. 250, 202–210.

    Article  CAS  Google Scholar 

  9. Babcock, G.T. and Wikström, M. (1992) Oxygen activation and the conservation of energy in cell respiration, Nature 356, 301–309.

    Article  CAS  Google Scholar 

  10. Saraste, M. (1990) Structural features of cytochrome oxidase, Quart. Rev. Biophys. 23, 331–366.

    Article  CAS  Google Scholar 

  11. Hill, B.C. (1994) Modelling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen, J. Biol. Chem. 269, 2419–2425.

    CAS  Google Scholar 

  12. Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376, 660–669.

    Article  CAS  Google Scholar 

  13. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R. and Yoshikawa, S. (1995) Structures of metal sites of bovine heart cytochrome c oxidase at 2.8 Å, Science 269, 1069–1074.

    Article  CAS  Google Scholar 

  14. Tsukihara, T., Aoyama, H, Yamashita, E., Tomizaki, T., Yamaguchi, H, Shinzawa-Itoh, K., Nakashima, R., Yaono, R. and Yoshikawa, S. (1996) The whole structure of the 13 subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136–1144.

    Article  CAS  Google Scholar 

  15. Gohlke, U., Warne, A. and Saraste, M. (1997) Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 Å resolution, EMBO J. 16, 1181–1188.

    Article  CAS  Google Scholar 

  16. Van der Oost, J., Lappalainen, P., Musacchio, A., Warne, A., Lemieux, L., Rumbley, J., Gennis, R.B., Aasa, R., Pascher, T., Malmström, B.G. and Saraste, M. (1992) Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex, EMBOJ. 11, 3209–3217.

    Google Scholar 

  17. Wilmanns, M., Lappalainen, P., Kelly, M., Sauer-Eriksson, E. and Saraste, M. (1995) Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center, Proc. Natl. Acad. Sci. USA 92, 11955–11959.

    Article  CAS  Google Scholar 

  18. Andrew, C.R. and Sanders-Loehr, J. (1996) Copper-sulfur proteins: Using Raman spectroscopy to predict coordination chemistry, Acc. Chem. Res. 29, 365–372.

    Article  CAS  Google Scholar 

  19. Malmström, B.G. and Aasa, R. (1993) The nature of the CuA center in cytochrome c oxidases, FEBS Lett. 325, 49–52.

    Article  Google Scholar 

  20. Zumft, W.G., Dreeusch, A., Löchelt, S., Cuypers, H., Friedrich, B. and Schneider, B. (1992) Derived amino acid sequences of nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues, Eur. J. Biochem. 208, 31–40.

    Article  CAS  Google Scholar 

  21. Antholine, W.E., Kastrau, D.H.W., Steffens, G.C.M., Buse, G., Zumft, W.G. and Kroneck, P.M.H. (1992). A comparative EPR investigation of the multi-copper proteins nitrous oxide reductase and cytochrome c oxidase, Eur. J. Biochem. 209, 875–881.

    Article  CAS  Google Scholar 

  22. Saraste, M., Castresana, J., Higgins, D., Lübben, M. and Wilmanns, M. (1996). Evolution of cytochrome oxidase. In ‘Origin and evolution of biological energy conversion’ (ed, H. Baltscheffsky), VCH Publishers, New York, pp. 255–289.

    Google Scholar 

  23. Zumft, W.G. (1993) The biological role of nitric oxide in bacteria, Arch. Microbiol. 160, 253–264.

    Article  CAS  Google Scholar 

  24. Van der Oost, J., de Boer, A.P.N., de Gier, J.W.L., Zumft, W.G., Stouthamer, A.H. and van Spanning, R.J.M. (1994). The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase, FEMS Microbiol. Lett. 121, 1–10.

    Article  Google Scholar 

  25. Saraste, M. and Castresana, J. (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes, FEBS Lett. 341, 1–4.

    Article  CAS  Google Scholar 

  26. Girsch, P. and de Vries, S. (1997) Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans, Biochim. Biophys. Acta 1318, 202–216.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saraste, M., Warne, A., Gohlke, U. (1998). Superfamily of Cytochrome Oxidases. In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics