Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 512))

Abstract

Flavocytochromes, as the name suggests, contain both flavin and heme groups as cofactors. The flavin can be flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) and the heme is usually heme-b or heme-c. Typical cofactors are illustrated in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, M.T., White, S.A., Reid, G.A. and Chapman, S.K. (1989) High Level expression of fully alive yeast flavocytochrome b 2 in Escherichia coli, Biochem.J. 258, 255–259.

    CAS  Google Scholar 

  2. Xia, Z.-X. and Mathews, F.S. (1990) Molecular structure of flavocytochrome b 2 at 2.4 Å resolution, J.Mol.Biol. 212, 837–863.

    Article  CAS  Google Scholar 

  3. Tegoni, M. and Cambillau, C. (1994) The 2.6 Å refined structure of the Escherichia coli recombinant Saccharomyces cerevisiae flavocytochrome b 2-sulfite complex, Protein.Sci. 3, 303–313.

    Article  CAS  Google Scholar 

  4. Daff, S., Ingledew, W.J., Reid, G.A. and Chapman S.K. (1996) New insights into the catalytic cycle of flavocytochrome b 2, Biochemistry 35, 6345–6450

    Article  CAS  Google Scholar 

  5. Chapman, S.K., Reid, G.A., Daff, S., Sharp, R.E., White, P., Manson F.D.C. and Lederer, F. (1994) Flavin to heme electron transfer in flavocytochrome b 2, Biochem.Soc.Trans. 22, 713–718.

    CAS  Google Scholar 

  6. Miles, C.S., Rouvière-Fourmy, N., Lederer, F., Mathews, F.S., Reid, G.A., Black, M.T. and Chapman, S.K. (1992) Tyr-143 facilitates interdomain electron transfer in flavocytochrome b 2. Biochem.J. 285, 187–192.

    CAS  Google Scholar 

  7. Rouvière-Fourmy, N, Capeillère-Blandin, C. and Lederer, F. (1994) Role of tyrosine 143 in lactate dehydrogenation by flavocytochrome b 2. Primary kinetic isotope effect studies with a phenylalanine mutant. Biochemistry 33, 798–806.

    Article  Google Scholar 

  8. Tegoni, M., Begotti, S. and Cambillau, C. (1995) X-ray structure of two complexes of the Y143F flavocytochrome b 2 mutant crystallized in the presence of lactate or phenyl lactate. Biochemistry 34, 9840–9850.

    Article  CAS  Google Scholar 

  9. White, P., Manson, F.D.C., Brunt, C.E., Chapman, S.K. and Reid, G.A. (1993) The importance of the interdomain hinge in intramolecular electron transfer in flavocytochrome b 2. Biochem.J. 291, 89–94.

    CAS  Google Scholar 

  10. Chapman, S.K., Reid, G.A., Bell, C., Short, D. and Daff, S. (1996) Flavocytochrome b 2: An ideal model for studying protein-mediated electron transfer. Biochem.Soc.Trans. 24, 73–77.

    CAS  Google Scholar 

  11. Pike, A.D., Manson, F.D.C., Chapman, S.K. and Reid G.A. (1995) Investigating the importance of a salt-bridge in flavocytochrome b 2 interdomain electron transfer. J.Inorg.Biochem. 59, 270.

    Article  Google Scholar 

  12. Pike, A.D., Chapman, S.K., Manson, F.D.C., Reid, G.A., Guidry, M. and Lederer, F. (1997) Investigating the importance of an interface residue in interdomain electron transfer. in K.J. Stevenson, V. Massey and C.H. Williams (eds.), Flavins and Flavoproteins, University of Calgary Press, Calgary, in press.

    Google Scholar 

  13. Sharp, R.E., White, P., Chapman, S.K. and Reid, G.A. (1994) Role of the interdomain hinge of flavocytochrome b 2 in intra-and inter-protein electron transfer. Biochemistry 33, 5115–5120.

    Article  CAS  Google Scholar 

  14. Sharp, R.E., Chapman, S.K. and Reid, G.A. (1996) Deletions in the interdomain hinge region of flavocytochrome b2: Effects on intraprotein electron transfer. Biochemistry 35, 891–899.

    Article  CAS  Google Scholar 

  15. Sharp, R.E., Chapman, S.K. and Reid, G.A. (1996) Modulation of flavocytochrome b2 intraprotein electron transfer in an interdomain hinge region. Biochem.J. 316, 507–513.

    CAS  Google Scholar 

  16. Capeillère-Blandin, C. (1995) Flavocytochrome b2-cytoduome c interactions: The electron transfer reaction revisited. Biochimie 77, 516–530.

    Article  Google Scholar 

  17. Tegoni, M., White, SA, Roussel, A, Mathews, F.S. and Cambillau, C. (1993) A hypothetical complex between crystalline flavocytochrome b2 and cytochrome c. Proteins.Struct.Function.Genet. 16, 408–422.

    Article  CAS  Google Scholar 

  18. Daff, S., Sharp, R.E., Short, D.M., Bell, C., White, P., Manson, F.D.C., Reid, G.A. and Chapman, S.K. (1996) Interaction of cytochrome c with flavocytochrome b 2. Biochemistry 35, 6351–6357.

    Article  CAS  Google Scholar 

  19. Short, D.M., Walkinshaw, M., Taylor, P., Reid, G.A. and Chapman S.K. (1997) Discovery of the kinetically relevant binding site on flavocytochrome b 2 for cytochrome c. in K.J. Stevenson, V. Massey and C.H. Williams (eds.), Flavins and Flavoproteins, University of Calgary Press, Calgary, in press.

    Google Scholar 

  20. Ackrell, B.AC., Johnson, M.K., Gunsalus, R. P. and Cecdrini, G. (1992) Structure and function of succinate dehydrogenase and fumarate reductase. in F. Müller (ed.) Chemistry and Biochemistry of Flavoenzymes) CRC Press, Boca Raton, Florida.

    Google Scholar 

  21. Morris, C.J., Black, AC., Pealing, S.L., Manson, F.D.C., Chapman, S.K., Reid, G.A., Gibson, D.M. and Ward, F.B. (1994). Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochem. J. 302, 587–593.

    CAS  Google Scholar 

  22. Pealing, S.L., Black, A.C., Manson, F.D.C., Ward, F.B., Chapman, S.K. and Reid, G.A. (1992). Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry 31, 12132–12140.

    Article  CAS  Google Scholar 

  23. Kotlyar, A.B. & Vinogradov, A.D. (1984) Evidencefor an essential arginine residue in the substrate-binding site of the mammalian succinate dehydrogenase. Biochem. Int. 8, 545–552.

    CAS  Google Scholar 

  24. Vinogradov, A.D. (1986) Succinate-ubiquinone reductase segment of respiratory chain Biochemistry USSR 51, 1663–1668.

    Google Scholar 

  25. Schröder, I., Gunsalus, R.P., Ackrell, B.A.C., Cochran, B. and Cecchini, G. (1991) Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J. Biol. Chem. 266, 13572–13579.

    Google Scholar 

  26. Morris, C.J., Gibson, D.M. and Ward, F.B. (1990) Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens . FEMS Microbiol. Letts. 69, 259–262.

    Article  CAS  Google Scholar 

  27. Myers, C.R. and Myers, J.M (1993). Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 114, 215–222.

    Article  CAS  Google Scholar 

  28. Myers, C.R. and Nealscn, K.H. (1990) Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172, 6232–6238.

    CAS  Google Scholar 

  29. Tsapin, A.I., Burbaev, D.S., Nealsm, K.H. and Keppen, O.I. (1995) Investigations of succinate dehydrogmase and fumarate reductase in whole cells of Shewanella putrefaciens (strains MR-1 and MR-7) using electron spin resonance spectroscopy. App1. Mag. Res. 9, 509–516.

    Article  CAS  Google Scholar 

  30. Pealing, S.L., Cheesman, M.R., Reid, G.A., Thomson, A.J., Ward, F.B. and Chapman, S.K. (1995). Spectroscopic and kinetic-studies of the tetraheme flavocytochrome c from Shewanella putrefaciens NCIMB400. Biochemistry 34, 6153–6158.

    Article  CAS  Google Scholar 

  31. Nelson, D.W., Kamataki, T, Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., Okuda, K. and Nebert, D.W. (1993). The P-450 superfamily - update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell. Biol. 12, 1–51.

    Article  CAS  Google Scholar 

  32. Gonzalez, F.J. (1989). The molecular biology of cytochrome P-450s. Pharmacol. Rev. 40, 243–288.

    Google Scholar 

  33. Guengerich, F.P. (1988). Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 48, 2946–2954.

    CAS  Google Scholar 

  34. Mueller, J., Loida, P.L. and Sligar, S.G. (1995) in P.R.O. Ortiz de Martellano (ed.) Cytochrome P450; Structure, Mechanism and Biochemistry 2nd edition, Plenum Press, New York, pp. 83–124.

    Chapter  Google Scholar 

  35. Munro, A.W. and Lindsay, J.G. (1996). Bacterial cytochromes P-450. Molec. Microbiol. 20, 1115–1125.

    Article  CAS  Google Scholar 

  36. Poulos, T.L., Finzel, B.C. and Howard, A.J. (1987). High resolution crystal structure of cytochrome P-450cam. J. Mol. Biol. 195, 687–700.

    Article  CAS  Google Scholar 

  37. Ravichandran, K.G., Boddupalli, S.S., Hasemann, C.A., Peterson, J.A. and Deisenhofer, J. (1993). Crystal structure of hemoprotein domain of P-450 BM3, a prototype for microsomal P-450s. Science 261, 170–176.

    Article  Google Scholar 

  38. Hasemann, C.A., Ravichandran, K.G., Peterson, J.A. and Deisenhofer, J. (1994). Crystal structure and refinement of cytochrome P-450terp at 2.3 Ångstrom resolution. J. Mol. Biol. 236, 1169–1185.

    Article  CAS  Google Scholar 

  39. Cupp-Vickery, J.R. and Poulos, T.L. (1995). Structure of cytochrome P-450eryF involved in erythromycin biosynthesis. Nature Struct. Biol. 2, 144–153.

    Article  CAS  Google Scholar 

  40. Narhi, L.O. and Fulco, A.J. (1986). Characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261, 7160–7169.

    CAS  Google Scholar 

  41. Narhi, L.O. and Fulco, A.J. (1987). Identification and characterization of two functional domains in cytochrome P-450 BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 262, 6683–6690.

    CAS  Google Scholar 

  42. Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R. and Snyder, S.H. (1991). Cloned and expressed nitric oxide synthase structurall resembles cytochrome P-450 reductace. Nature, London, 351, 714–718.

    Article  CAS  Google Scholar 

  43. Miles, J.S., Munro, A.W., Rospendowski, B.N., Smith, W.E., McKnight, J. and Thomson, A.J. (1992). Domains of the catalytically self-sufficient cytochrome P-450 BM3 - genetic construction, overexpression, purification and spectroscopic characterization. Biochem. J. 288, 503–509.

    CAS  Google Scholar 

  44. Munro, A.W., Lindsay, J.G., Coggins, J.R., Kelly, S.M. and Price, N.C. (1994). Structural and enzymological analysis of the interaction of isolated domains of cytochrome P-450 BM3. FEBS Lett. 343, 70–74.

    Article  CAS  Google Scholar 

  45. Daff, S.N., Chapman, S.K., Turner, K.L., Holt, R., Govindaraj, S., Poulos, T.L. and Munro, A.W. (1997). Redox control of the catalytic cycle of P-450 BM3. Biochemistry (submitted).

    Google Scholar 

  46. Munro, A.W., Daff, S., Coggins, J.R., Lindsay, J.G. and Chapman, S.K. (1996). Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur. J. Biochem. 239, 403–409.

    Article  CAS  Google Scholar 

  47. Modi, S., Sutcliffe, M.J., Primrose, W.U., Lian, L.-Y. and Roberts, G.C.K. (1996). The catalytic mechanism of cytochrome P-450 BM3 involves a 6 Ångstrom movement of the bound substrate on reduction. Nature Struct. Biol. 3, 414–417.

    Article  CAS  Google Scholar 

  48. Klein, M.L. and Fulco, A.J. (1994). The interaction of cytochrome c and the heme domain of cytochrome P-450 (BM-3) with the reductase domain of cytochrome P-450 (BM-3). Biochim. Biophys. Acta 1201, 245–250.

    Article  CAS  Google Scholar 

  49. Murataliev, M.B. and Feyereisen, R. (1996). Functional interactions in cytochrome P-450 BM3 - fatty acid substrate-binding alters electron transfer properties of the flavoprotein domain. Biochemistry 35, 15029–15037.

    Article  CAS  Google Scholar 

  50. Munro, AW., Malarkey, K., McKnight, J., Thomson, A.J., Kelly, S.M., Price, N.C., Lindsay, J.G., Coggins, J.R. and Miles, J.S. (1994) The effect of replacement of tryptophan 96 of cytochrome P-450 BM3 from Bacillus megaterium on catalytic function. Biochem. J. 303, 423–428.

    CAS  Google Scholar 

  51. Baldwin, J.E., Morris, G.M. and Richards W.G. (1991). Electron transport in cytochromes P450 by covalent switching. Proc.Roy.Soc.Lond.Bio.Sci. 245, 43–51.

    Article  CAS  Google Scholar 

  52. Oliver, C.F., Modi, S., Sutcliffe, M.J., Primrose, W.U., Lian, L.Y. and Roberts, G.C.K. (1997). A single mutation in cytochrome P-450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry 36,1567–1572.

    Article  CAS  Google Scholar 

  53. Graham Lorence, S., Truan, G., Peterson, J.A., Falck, J.R., Wei, S.Z., Helvig, C. and Capdevila, J.H. (1997). An active site substitution, F87V, converts cytochrome P-450 BM-3 into a regio- and stereoselective (14S, 15R)-arachidonic acid epoxygenase. J. Biol. Chem. 272, 1127–1135.

    Article  Google Scholar 

  54. Li, H.Y. and Poulos, T.L. (1997). The structure of the cytochrome P-450 BM3 haem domain complexed with the fatty acid substrate palmitoleic acid. Nature Struct. Biol. 4, 140–146.

    Article  CAS  Google Scholar 

  55. Yeom, H., Sligar, S.G., Li H.Y. and Fulco A.J. (1995). The role of Thr268 in oxygen activation of cytochrome P450 (BM-3). Biochemistry 34, 14733–14740

    Article  CAS  Google Scholar 

  56. Klein, M.L. and Fulco, A.J. (1993). Critical residues involved in FMN binding and catalytic activity in cytochrome P-450 (BM-3). J. Biol. Chem. 268, 7553–7661.

    CAS  Google Scholar 

  57. Govindaraj, S. and Poulos, T.L. (1996). Probing the structure of the linker connecting the reductase and heme domains of cytochrome P-450 BM-3 using site-directed mutagenesis. Protein Sci. 5, 1389–1393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chapman, S.K., Reid, G.A., Munro, A.W. (1998). Flavocytochromes: Nature’s Electrical Transformers. In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics