Skip to main content

What are the niches for SPECT versus PET versus MRI?

  • Chapter
What’s New in Cardiovascular Imaging?

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 204))

  • 79 Accesses

Summary

Nuclear medicine techniques are the most widely validated diagnostic procedures for noninvasive assessment of myocardial perfusion and metabolism. Large patient populations have been evaluated to assess diagnostic accuracy and define prognostic values. SPECT performed under resting and stress conditions using Tc-99m labeled flow tracers has a high diagnostic, cost-effective performance for detection and location of coronary artery disease. Positron emission tomography using FDG for assessment of residual viability in patients with severely impaired left ventricular function remains the gold standard for other methods evolving in the field of metabolic CV imaging. Currently, PET is the only method that has the potential to offer non-invasive true quantitative measurements of myocardial blood flow and flow reserve.

MRI probably has the greatest potential for future developments in cardiac imaging due to its technical diversity. In clinical routine, it offers great potential for detailed anatomical imaging of the heart and great vessels in adults and children with complex myocardial disease, flow evaluation in patients with valvular disease as well as information on global and regional myocardial function. Functional MR imaging directed towards assessment of ischemic heart disease and metabolic activity is beginning to evolve. Current research and development with high field spectroscopic MRI, interventional MRI, metabolic contrast agents and high resolution vessel wall characterization may eventually find clinical application in CV MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DePasquale EE, Nody AC, DePuey EG et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988;77:316–327.

    Article  PubMed  CAS  Google Scholar 

  2. DePuey EG Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441–449.

    PubMed  CAS  Google Scholar 

  3. Ficaro EP, Fessier JA, Ackermann RJ, Rogers WL, Corbett JR, Schwaiger M. Simultaneous transmission-emission thallium-201 cardiac SPECT: effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921–931.

    PubMed  CAS  Google Scholar 

  4. Ficaro EP, Fessier JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation 1996;93:463–473.

    Article  PubMed  CAS  Google Scholar 

  5. Galt JR, Cullom SJ, Garcia EV. SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 1992;33:2232–2237.

    PubMed  CAS  Google Scholar 

  6. Schelbert HR, Verba JW, Johnson AD et al. Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation 1975;51:902–909.

    Article  PubMed  CAS  Google Scholar 

  7. Germano G, Kiat H, Kavanagh PB et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–2147.

    PubMed  CAS  Google Scholar 

  8. Berman DS, Germano G. Evaluation of ventricular ejection fraction, wall motion, wall thickening, and other parameters with gated myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol 1997;4(2 pt 2):S169–S171.

    Article  PubMed  CAS  Google Scholar 

  9. Strauss HW, Harrison K, Langan JK, Lebowitz E Pitt B. Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 1975;51:641–645.

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen AP, Morris KG, Murdock R, Bruno FP, Cobb FR. Linear relationship between the distribution of thalium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 1980;61:797–801.

    Article  PubMed  CAS  Google Scholar 

  11. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RD. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:l4l–146.

    Article  Google Scholar 

  12. Matsunari I, Haas F, Nguyen NT et al. Comparison of sestamibi, tetrofosmin and Q12 retention during vasodilation in porcine myocardium [abstract]. Circulation 1997;96(8 Suppl):I687.

    Google Scholar 

  13. Udelson JE, Coleman PS, Metherall J et al. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201T1 and 99mTc-sestamibi. Circulation 1994;89:2552–2561.

    Article  PubMed  CAS  Google Scholar 

  14. Matsunari I, Fujino S, Taki J et al. Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease. J Nucl Med 1995;36:1961–1967.

    PubMed  CAS  Google Scholar 

  15. Bax JJ, Visser FC, Blanksma PK et al. Comparison of myocardial uptake of flourine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 1996;37:1631–1636.

    PubMed  CAS  Google Scholar 

  16. Ziegler SI, Enterrottacher A, Boning G et al. Performance characteristics of a dual head coincidence camera for the detection of small lesions [abstract]. J Nucl Med 1997;38(5 Suppl):206P.

    Google Scholar 

  17. Czernin J, Barnard RJ, Sun KT et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995;92:197–204.

    Article  PubMed  CAS  Google Scholar 

  18. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubinfire M Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–817.

    Article  PubMed  CAS  Google Scholar 

  19. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;1986:884–888.

    Google Scholar 

  20. Young L, Renfu Y, Russell R et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sacrolemma in vivo. Circulation 1997;95:415–422.

    Article  PubMed  CAS  Google Scholar 

  21. Orlandi C. Pharmacology of coronary vasodilation: a brief review. J Nucl Cardiol 1996;3(6 pt 2):S27–S30.

    Article  PubMed  CAS  Google Scholar 

  22. Maddahi J Gambhir SS. Cost-effective selection of patients for coronary angiography. J Nucl Cardiol 1997;4(2 pt 2):Sl4l–S151.

    Google Scholar 

  23. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350–1358.

    Article  PubMed  CAS  Google Scholar 

  24. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995;91:54–65.

    Article  PubMed  CAS  Google Scholar 

  25. Breisblatt WM, Barnes JV, Weiland F Spaccavento LJ. Incomplete revascularization in multivessel percutaneous transluminal coronary angioplasty: the role for stress thallium-201 imaging. J Am Coll Cardiol 1988;11:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  26. Schelbert HR, Wisenberg G, Phelps ME et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197–1207.

    Article  PubMed  CAS  Google Scholar 

  27. Tamaki N, Yonekura Y, Senda M et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181–1188.

    PubMed  CAS  Google Scholar 

  28. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubinfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–817.

    Article  PubMed  CAS  Google Scholar 

  29. Berman DS Hachamovitch R. Risk assessment in patients with stable coronary artery disease: incremental value of nuclear imaging. J Nucl Cardiol 1996;3(6 pt 2):S41–S49.

    Article  PubMed  CAS  Google Scholar 

  30. Haas F, Haehnel CJ, Picker W et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  31. Hachamovitch R, Berman DS, Kiat H et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905–914.

    Article  PubMed  CAS  Google Scholar 

  32. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging in patients with unstable angina who respond to medical treatment. J Am Coll Cardiol 1991;17:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  33. Miller DD, Gersh BJ. Risk-sensitive therapeutic strategies for coronary artery disease: toward testing-driven therapy in stable angina patients with low-to intermediate risk cardiac imaging results. J Nucl Cardiol 1997;4:409–417.

    Article  PubMed  CAS  Google Scholar 

  34. Scholz TD, Martins JB Skorton DJ. NMR relaxation times in acute myocardial infarction relative influence of changes in tissue water and fat content. Magn Reson Med 1992;23:89–95.

    Article  PubMed  CAS  Google Scholar 

  35. Ahmad M, Johnson RF Jr, Fawett HD, Schreiber MH. Magnetic resonance imaging in patients with unstable angina: comparison with acute myocardial infarction and normals. Magn Reson Imaging 1988;6:527–534.

    Article  PubMed  CAS  Google Scholar 

  36. Miller DD, Holmvang G, Gill JB et al. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989;10:246–255.

    Article  PubMed  CAS  Google Scholar 

  37. Manning WJ, Atkinson DJ, Grossmann W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–965.

    Article  PubMed  CAS  Google Scholar 

  38. Wilke N, Jerosch-Herold M, Stillman AE et al. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Q 1994;10:249–286.

    PubMed  CAS  Google Scholar 

  39. Steffans JC, Sakuma H, Bourne MW, Higgins CB. Magnetic resonance imaging in ischemic heart disease. Am Heart J 1996;132:156–173.

    Article  PubMed  CAS  Google Scholar 

  40. Van der Wall EE, De Roos A, Van Voorthuisen AE, Bruschke AVG. Magnetic resonance imaging: a new approach for evaluating coronary artery disease? Am Heart J 1991;121:1203–1220.

    Article  PubMed  Google Scholar 

  41. Haas F, Hahnel C, Sebening F, Meisner H, Schwaiger M. Effect of preoperative PET viability on peri-and postoperative risk [abstract]. J Am Coll Cardiol 1996;27(Suppl A):300A.

    Article  Google Scholar 

  42. DiCarli MF, Asgarzadie F, Schelbert HR et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–3444.

    Article  CAS  Google Scholar 

  43. Beller GA. Selecting patients with ischemic cardiomyopathy for medical treatment, revascularization, or heart transplantation. J Nucl Cardiol 1997;4(2 pt 2):S152–S157.

    Article  PubMed  CAS  Google Scholar 

  44. Bonow RO. Identification of viable myocardium. Circulation 1996;94:2674–2680.

    Article  PubMed  CAS  Google Scholar 

  45. Schaefer S, Malloy CR Katz J et al. Gadolinium-DTPA enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 1988;12:1064–1072.

    Article  PubMed  CAS  Google Scholar 

  46. Masui T, Saeed M, Wendland MF, Higgins CB. Occlusive and reperfused myocardial infarcts: MR imaging differentiation with nonionic-Gd-DTPA-BMA. Radiology 1991;181:77–83.

    PubMed  CAS  Google Scholar 

  47. De Roos A, Van Rossum AC, Van der Wall E et al. Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 1989;172:717–720.

    PubMed  Google Scholar 

  48. Baer FM, Smolarz K, Jungehulsing M et al. Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 1992;123:636–645.

    Article  PubMed  CAS  Google Scholar 

  49. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutaminegradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–1015.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stollfuss, J.C., Bengel, F.M., Schwaiger, M. (1998). What are the niches for SPECT versus PET versus MRI?. In: Reiber, J.H.C., Van Der Wall, E.E. (eds) What’s New in Cardiovascular Imaging?. Developments in Cardiovascular Medicine, vol 204. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5123-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5123-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6154-4

  • Online ISBN: 978-94-011-5123-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics