Flat modules and semiperfect rings

Part of the Mathematics and Its Applications book series (MAIA, volume 449)


Let A be a ring, E A and A M be right and left A-modules, respectively, and let E × M be the cartesian product of these modules. The tensor product E A M is the Abelian group F/H, where F is the free Z-module with basis indexed by E × M, and H is the subgroup of F generated by all elements of the form
$$ (x + u,y) - (x,y) - (u,y),(x,y + v) - (x,y) - (x,v),(xa,y) - (x,ay), $$
where x, uE, y, vM, and aA.(We write EM instead of E A M if there is no doubt about A.) The image of (x, y) under a natural map E × MEM is denoted by xy.


Direct Summand Left Ideal Projective Module Semiprimary Ring Perfect Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Moscow Power Engineering InstituteTechnological UniversityMoscowRussia

Personalised recommendations