Skip to main content

Formation of Nanometer-Scale Contacts to Viscoelastic Materials

Implications for MEMS

  • Conference paper
Tribology Issues and Opportunities in MEMS

Abstract

The making and breaking of nanometer-scale contacts is an essential operation in MEMS devices with moving parts. The behavior of contacts in this size range is not well understood, especially if viscoelastic materials are involved. This article describes shear modulation spectroscopy, a new scanning force microscope technique especially well suited for quantitative studies of nanometer-scale contacts to viscoelastic materials such as lubricants and some polymers. The technique is illustrated by measurements and analysis of contacts to poly(vinylethylene).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J. (1990) Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture, Science 248, 454–461.

    Article  ADS  Google Scholar 

  2. Johnson, K.L. (1997) Adhesion and friction between a smooth elastic spherical asperity and a plane surface, Proc. Roy. Soc. London A 453, 163–179.

    Article  ADS  Google Scholar 

  3. Burnham, N.A. and Colton, R.J. (1993) Force Microscopy, in D.A. Bonnell (ed.), Scanning Tunneling Microscopy and Spectroscopy,VCH Publishers, New York, pp.191–249.

    Google Scholar 

  4. Johnson, K.L. (1985) Contact Mechanics,Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  5. Chaudhury, M.K. (1996) Interfacial interaction between low energy surfaces, Mati. Sci. Eng. R16, 97–158.

    Article  Google Scholar 

  6. Maboudian, R. and Howe, R. T. (1997) Critical Review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20.

    Article  Google Scholar 

  7. Wahl, K.J., Stepnowski, S.V. and Unertl, W.N. (1997) Viscoelastic effects in nanometer-scale contacts under shear, Tribology Lett. (submitted).

    Google Scholar 

  8. Bhushan, B., Israelachvili, J.N., and Landman, U. (1995) Nanotribology: friction, wear and lubrication at the atomic scale, Nature 374, 607–616.

    Article  ADS  Google Scholar 

  9. Ferry, J.D. (1980) Viscoelastic Properties of Polymers,John Wiley, New York.

    Google Scholar 

  10. Yamanaka, K. and Tomita, E. (1995) Lateral Force Modulation Atomic Force Microscope for Selective Imaging of Friction Forces, Jpn. J. Appl. Phys. 34, 2879–2882.

    Article  ADS  Google Scholar 

  11. Carpick, R.W., Ogletree, D. F. and Salmeron, M. (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550.

    Article  ADS  Google Scholar 

  12. Lantz, M.A., O’Shea, A. C., Hoole, F. and Welland, M.E. (1997) Lateral stiffness of the tip and tip-sample contact in frictional force microscopy, Appl. Phys. Lett. 70, 970–972.

    Article  ADS  Google Scholar 

  13. Lantz, M.A., O’Shea, A. C., Welland, M.E. and K. L. Johnson (1997) Atomicforce-microscope study of contact area and friction on NbSe2, Phys. Rev. B 55,10776–10785.

    Article  ADS  Google Scholar 

  14. Luengo, G., Schmitt, F.J., Hill, R., and Israelachvili, J. (1997) Thin film Rheology and Tribology of Confined Polymer Melts: Contrasts with Bulk Properties, Macromolecules 30, 2482–2494.

    Article  ADS  Google Scholar 

  15. Granick, S. and Hu, H.W. (1994) Nanorheology of Confined Polymer Melts. 1. Linear Shear Response at strongly Adsorbing surfaces, Langmuir 10, 3857–3866.

    Article  Google Scholar 

  16. Georges, J. M., Tonck, A., Loubet, J.L., Mazuyer, D., Georges, E. and Sidoroff, F. (1996) Rheology and Friction of Compressed Polymer Layers Adsorbed on Solid surfaces, J. Phys. II France 6, 57–76.

    Article  Google Scholar 

  17. Cohen, S.R., Neubauer, G., and McClelland, GM, (1990) Nanomechanics of a Au-Ir contact using a bidirectional atomic force microscope, J. Vac. Sci. Technol. A 8, 3449.

    Article  ADS  Google Scholar 

  18. Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.J., and Oulevey, F. (1996) Materials’ properties measurements: Choosing the optimum scanning probe micro-scope configuration, J. Vac. Sci. Technol. B 14, 1308–1312.

    Article  Google Scholar 

  19. Tanaka, K., Taura, A., Ge, S.R., Takahara, A., and Kajiyama, T. (1996) Molecular Weight Dependence of Surface Dynamic Viscoelastic Properties for the Monodisperse Polystyrene Film, Macromolecules 29,3040–3042.

    Article  ADS  Google Scholar 

  20. Mazeran, P.E. and Loubet, J.L. (1997) Force modulation with a scanning force microscope: an analysis, Tribology Lett. 3,125–132.

    Article  Google Scholar 

  21. Koleske, D.D., Lee, G.U, Gans, B.I.,Lee, K.P., DiLella, D.P., Wahl, K.J., Barger, W.R., Whitman, L.J. and Colton, R.J. (1995),Design and calibration of a scanning force microscope for friction, adhesion, and contact potential studies, Rev. Sci. Instrum. 66 4566–4574.

    Article  ADS  Google Scholar 

  22. Ogletree, D.F., Carpick, R.W. and Salmeron, M. (1996) Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67,3298–3306.

    Article  ADS  Google Scholar 

  23. Roland, C. M. (1994) Constraints on Local Segmental Motion in Poly(vinylethylene) Networks, Macromolecules 27, 4242–4247.

    Article  ADS  Google Scholar 

  24. Burnham, N.A., Colton, R.J., and Pollock, H.M. (1993) Interpretation of force curves in force microscopy, Nanotechnology 4, 64–80.

    Article  ADS  Google Scholar 

  25. Barquins, M. (1982) Influence of Dwell Time on the Adherence of Elastomers, J. Adhesion 14, 63–82.

    Article  Google Scholar 

  26. Aimé, J.P., Elkaakour, Z., Odin, C., Bouhacina, T., Michel, T., Curély, J. and Dautant, A. (1994) Comments on the use of the force mode in atomic force microscopy for polymer films, J. Appl. Phys. 76, 754–762.

    Article  ADS  Google Scholar 

  27. K. J. Wahl, S. V. Stepnowski and W. N. Unertl (to be published).

    Google Scholar 

  28. Ting, T. C. T. (1966) The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space, J. Appl. Mech. 33, 845–854.

    Article  ADS  MATH  Google Scholar 

  29. Harris, C.M. (ed) (1996) Shock and Vibration Handbook,4th edition, McGraw-Hill, New York, p. 2.5.

    Google Scholar 

  30. Ting, T.C.T. (1968) Contact Problems in the Linear Theory of Viscoelasticity, J. Appl. Mech. 35, 248–254.

    Article  ADS  MATH  Google Scholar 

  31. Lee, E.H. and Radok, J.R.M. (1960) The Contact Problem for Viscoelastic Bodies, J. Appl. Mech. 27, 438–444.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Sneddon, J. N. (1965) Int. J. Eng. 3, 47.

    Article  MathSciNet  MATH  Google Scholar 

  33. Maugis, D. (1995) Extension of the Johnson-Kendall-Roberts Theory of the Elastic Contact of Spheres to Large Contact Radii, Langmuir 11, 679–682.

    Article  Google Scholar 

  34. Johnson, K.L., Kendall, K. and Roberts, A.D. (1971) Surface energy and the contact of elastic solids, Proc. R. Soc. London A 324, 301–313.

    Article  ADS  Google Scholar 

  35. Derjaguin, B.V., Muller, V.M. and Toporov, Y.P. (1975) Effect of Contact Deformations on the Adhesion of Particles, J. Colloid Interface Sci. 53, 314–326.

    Article  Google Scholar 

  36. Greenwood, J. A. (1997) Adhesion of Elastic Spheres, Proc. R. Soc. London A 453,1277–1297.

    MathSciNet  ADS  Google Scholar 

  37. Falsafi, A., Deprez, P., Bates, F. S. and Tirrell, M. (1997) Direct Measurement of adhesion between viscoelastic polymers: A contact mechanical approach, J. Rheology (submitted).

    Google Scholar 

  38. Tanaka, K., Takahara, A., and Kajiyama, T. (1995) Surface molecular motion in thin films of poly(styrene-block-methyl methacrylate) diblock copolymer, Acta Polymer 46, 476–482.

    Article  Google Scholar 

  39. Mayes, A.M. (1994) Glass Transition of Amorphous Polymer Surfaces, Macromolecules 27, 3114–3115.

    Article  ADS  Google Scholar 

  40. Barquins, M. and Maugis, D. (1981) Tackiness of Elastomers, J. Adhesion 13,53–65.

    Article  Google Scholar 

  41. Greenwood, J.A. and Johnson, K.L. (1981) The mechanics of adhesion of viscous solids, Phil Mag. A 43, 697–711.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wahl, K.J., Unertl, W.N. (1998). Formation of Nanometer-Scale Contacts to Viscoelastic Materials. In: Bhushan, B. (eds) Tribology Issues and Opportunities in MEMS. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5050-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5050-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6121-6

  • Online ISBN: 978-94-011-5050-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics