Skip to main content

Coherent Structure Eduction in Wavelet-Forced Two-Dimensional Turbulent Flows

  • Conference paper
IUTAM Symposium on Dynamics of Slender Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

Abstract

We analyze vorticity fields obtained from direct numerical simulations (DNS) of statistically stationary two-dimensional turbulence where the forcing is done in wavelet space. We introduce a new eduction method for extracting coherent structures from two-dimensional turbulent flows. Using a nonlinear wavelet technique based on an objective universal threshold we separate the vorticity field into coherent structures and background flow. Both components are multi-scale with different scaling laws, and therefore cannot be separated by Fourier filtering. We find that the coherent structures have non-Gaussian statistics while the background flow is Gaussian, and we discuss the implications of this result for turbulence modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babiano A., Basdevant C., Legras B. and Sadourny R. (1987). Vorticity and passivescalar dynamics in two-dimansional turbulence, J. Fluid Mech., 183, 379–397.

    Article  Google Scholar 

  • Batchelor, G. K. (1969). Computation of the Energy Spectrum in Homogeneous Two-dimensional Turbulence, Phys. Fluids, suppl. II, 12, 233–239.

    MATH  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on wavelets, (SIAM, Philadelphia).

    Book  MATH  Google Scholar 

  • Domaradzki, J. A. (1992). Nonlocal triad interactions and the dissipation range of isotropic turbulence, Phys. Fluids A, 4, 2037.

    Article  MATH  Google Scholar 

  • Donoho, D. (1992). Wavelet shrinkage and Wavelet -Vaguelette Decomposition: a 10-minute tour, in “Progress in Wavelet Analysis and Applications”, Proc. Int. Coq. “Wavelets and Applications”, Toulouse, 109–128.

    Google Scholar 

  • Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, G. (1995). Wavelet shrinkage: Asymptopia? (with discussion), J. Royal Stat. Soc., Ser. B 57, 301–369.

    MathSciNet  Google Scholar 

  • Farge, M. (1992). Wavelet Transforms and their Applications to Turbulence, Ann. Rev. Fluid Mech., 24, 395–457.

    Article  MathSciNet  Google Scholar 

  • Farge, M. (1994). Wavelets and two-dimensional turbulence, Computational Fluid Dynamics, 1, (John Wiley & Sons), 1–23.

    Google Scholar 

  • Farge, M., Guezennec, Y., Ho, C. M. and Meneveau, C. (1990). Continuous wavelet analysis of coherent structures, in Studying turbulence using numerical simulation databases - III (ed. P. Moin, W. C. Reynolds and J. Kim), pp. 331–348. Center for Turbulence Research.

    Google Scholar 

  • Farge, M., Goirand, E., Meyer, Y., Pascal F. and Wickerhauser, M. V. (1992). Improved predictability of two-dimensional turbulent flows using wavelet packet compression, Fluid Dyn. Res. 10, 229–250.

    Article  Google Scholar 

  • Farge, M. and Holschneider, M. (1990). Interpretation of two-dimensional turbulence spectrum in terms of singularity in the vortex cores, Europhys. Lett., 15(7), 737–743.

    Article  Google Scholar 

  • Farge, M., Kevlahan, N., Perrier, V. and Goirand, E. (1996). Wavelets and Turbulence, Proc. IEEE 84, 639–669.

    Article  Google Scholar 

  • Farge M. and Philipovitch, T. (1993). Coherent structure analysis and extraction using wavelets, in Progress in Wavelet Analysis and Applications, (ed. Y. Meyer and S. Roques), (Editions Frontières), 477–481.

    Google Scholar 

  • Fröhlich, J. and Schneider, K. (1996). Numerical Simulation of Decaying Turbulence in an Adaptive Wavelet Basis, Appl. Comput. Harm. Anal., 3, 393–397.

    Article  MATH  Google Scholar 

  • Hussain, A. K. M. F. (1986). Coherent structures and turbulence, J. Fluid Mech. 173, 303–356.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. USSR, 30, 301–305.

    Google Scholar 

  • Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Kraichnan, R. H. (1967). Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417–1423.

    Article  Google Scholar 

  • McWilliams, J. C. (1984). The emergence of isolated coherent vortices in turbulent flows, J. Fluid Mech., 146, 21–43.

    Article  MATH  Google Scholar 

  • Meneveau, C. (1991). Analysis of turbulence in the orthonormal wavelet representation, J. Fluid Mech. 232, 469–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Min, I. A., Mezié, I. and Leonard, A. (1996) Lévy stable distributions for velocity and velocity difference in systems of vortex elements, Phys. Fluids, 8, 1169–1180.

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi, B. and Pironneau, O. (1993). Analysis of the k-epsilon model. Masson-Wiley.

    Google Scholar 

  • Poliakov, A. M. (1993). Conformal Turbulence, Nucl. Phys. B, 396, 367.

    Article  Google Scholar 

  • von Sachs, R. and Schneider, K. (1996). Wavelet Smoothing of evolutionary spectra by non-linear thresholding, Appl. Comput. Harm. Anal., 3, 268–282.

    Article  MATH  Google Scholar 

  • Schneider, K. and Farge, M. (1997). Wavelet forcing for numerical simulation of two-dimensional turbulence, C. R. Acad. Sci. Paris Série II. t. 325, 263–270.

    MATH  Google Scholar 

  • Schneider, K., Kevlahan, N. and Farge, M. (1997). Compârison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for the two-dimensional Navier-Stokes equations. Preprint CPT-97/P.3494, Centre de Physique Théorique, CNRS - Luminy, Marseille, to appear in Theoretical and Computational Fluid Dynamics.

    Google Scholar 

  • Weiss, J. (1992). The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D, 48, 273.

    Article  Google Scholar 

  • Wickerhauser, V., Farge, M., Goirand, E., Wesfreid, E. and Cubillo, E. (1994). Efficiency comparison of wavelet packet and adapted local cosine bases for compression of a two-dimensional turbulent flow, in Wavelets: theory, algorithms and applications (ed. Chui et al.), pp. 509–531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Farge, M., Schneider, K., Kevlahan, N.KR. (1998). Coherent Structure Eduction in Wavelet-Forced Two-Dimensional Turbulent Flows. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics