Skip to main content

We must Choose the Simplest Physical Theory: Levin-Li-Vitányi Theorem and its Potential Physical Applications

  • Conference paper
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 98))

  • 527 Accesses

Abstract

If several physical theories are consistent with the same experimental data, which theory should we choose? Physicists often choose the simplest theory; this principle (explicitly formulated by Occam) is one of the basic principles of physical reasoning. However, until recently, this principle was mainly a heuristic because it uses the informal notion of simplicity.

With the explicit notion of simplicity coming from the Algorithmic Information theory, it is possible not only to formalize this principle in a way that is consistent with its traditional usage in physics, but also to prove this principle, or, to be more precise, deduce it from the fundamentals of mathematical statistics as the choice corresponding to the least informative prior measure. Potential physical applications of this formalization (due to Li and Vitányi) are presented.

In particular, we show that, on the qualitative level, most fundamental ideas of physics can be re-formulated as natural steps towards choosing a theory that is the simplest in the above precise sense (although on the intuitive level, it may seem that, e.g., classical physics is easier than quantum physics): in particular, we show that such ideas as Big Bang cosmology, atomism, uncertainty principle, Special Relativity, quark confinement, quantization, symmetry, supersymmetry, etc. can all be justified by this (Bayesian justified) preference for formalized simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Brink and M. Henneaux, Principles of string theory, Plenum Press, N.Y., 1988.

    Book  Google Scholar 

  2. N. Chater, “Reconciling simplicity and likelihood principles in perceptual organization”, Psychological Reviews, 1996, Vol. 103, pp. 566–581.

    Article  Google Scholar 

  3. A. Einstein, “On the method of theoretical physics”, The Herbert Spencer Lecture delivered at Oxford on June 10, 1933. Reprinted in: A. Einstein, Ideas and opinions, Crown Publishers, N.Y., 1954, pp. 270–276.

    Google Scholar 

  4. A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry, error estimation, and other applications of set-valued analysis”, ACM SIGNUM Newsletter, 1996, Vol. 31, No. 4, pp. 3–25.

    Article  Google Scholar 

  5. A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry: towards mathematical foundations”, International Journal of Theoretical Physics, 1997, Vol. 36, No. 4, pp. 1009–1020.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry: geometry explains shapes of celestial bodies”, Geombinatorics, 1997, Vol. VI, No. 4, pp. 125–139.

    MathSciNet  Google Scholar 

  7. A. M. Finkelstein and V. Kreinovich, “Derivation of Einstein’s, Brans-Dicke and other equations from group considerations,” On Relativity Theory. Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur India 1984, Vol. 2, Y. Choque-Bruhat and T. M. Karade (eds), World Scientific, Singapore, 1985, pp. 138–146.

    Google Scholar 

  8. A. M. Finkelstein, V. Kreinovich, and R. R. Zapatrin, “Fundamental physical equations uniquely determined by their symmetry groups,” Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-N.Y., Vol. 1214, 1986, pp. 159–170.

    Google Scholar 

  9. Q. Gao and M. Li, “An application of minimum description length principle to online recognition of handprinted alphanumerals”, In: Proc. 11th Int’s Join Conferences on Artificial Intelligence IJCAI, Morgan Kaufmann, San Mateo, CA, 1989, pp. 843–848.

    Google Scholar 

  10. Group theory in physics: proceedings of the international symposium held in honor of Prof. Marcos M o shins ky, Cocoyoc, Morelos, Mexico, 1991, American Institute of Physics, N.Y., 1992.

    Google Scholar 

  11. H. A. Keuzenkamp and M. McAleer, “Simplicity, scientific inference, and econometric modelling”, The Economic Journal, 1995, Vol. 105, pp. 1–21.

    Article  Google Scholar 

  12. V. Kreinovich. “Derivation of the Schroedinger equations from scale invariance,” Theoretical and Mathematical Physics, 1976, Vol. 8, No. 3, pp. 282–285.

    Article  Google Scholar 

  13. V. Kreinovich and L. Longpré, “Unreasonable effectiveness of symmetry in physics”, International Journal of Theoretical Physics, 1996, Vol. 35, No. 7, pp. 1549–1555.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Li and P. M. B. Vitányi, “Inductive reasoning and Kolmogorov complexity”, J. Comput. System. Sci., 1992, Vol. 44, No. 2, pp. 343–384.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Li and P. M. B. Vitányi, “Computational machine learning in theory and practice”, In: J. van Leeuwen (ed.), Computer Science Today, Recent Trends and Developments, Springer Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg-N.Y., 1995, Vol. 1000, pp. 518–535.

    Google Scholar 

  16. M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, N.Y., 1997.

    MATH  Google Scholar 

  17. Ch. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, 1973.

    Google Scholar 

  18. P. J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, N.Y., 1995.

    Book  MATH  Google Scholar 

  19. E. P. D. Pednault, “Some experiments in applying inductive inference principles to surface reconstruction”, In: Proc. 11th International Joint Conferences on Artificial Intelligence IJCAI, Morgan Kaufmann, San Mateo, CA, 1989, pp. 1603–1609.

    Google Scholar 

  20. J. J. Rissanen, “Modeling by the shortest data description”, Automatica, 1978, Vol. 14, pp. 465–471.

    Article  MATH  Google Scholar 

  21. J. J. Rissanen, Stochastic complexity and statistical inquiry, World Scientific, Singapore, 1989.

    Google Scholar 

  22. J. J. Rissanen, “Fisher information and stochastic complexity”, IEEE Transactions on Information Theory, 1996, Vol. IT-42, No. 1, pp. 40–47.

    Article  MathSciNet  Google Scholar 

  23. I. Rosenthal-Schneider, “Presuppositions and anticipations”, In: P. A. Schlipp (ed.), Albert Einstein: philosopher-scientist, Tbdor Pubi., N.Y., 1951.

    Google Scholar 

  24. W. Siegel, Introduction to string field theory, World Scientific, Singapore, 1988.

    Book  Google Scholar 

  25. Symmetries in physics: proceedings of the international symposium held in honor of Prof. Marcos Moshinsky, Cocoyoc, Morelos, Mexico, 1991, Springer-Verlag, Berlin, N.Y., 1992.

    Google Scholar 

  26. P. M. B. Vitányi and M. Li, “Ideal MDL and its relation to Bayesianism”, In: D. Dowe, K. Korb, and J. Oliver (eds.), Proc. ISIS: Information, Statistics, and Induction in Science Conference, World Scientific, Singapore, 1996, pp. 282–291.

    Google Scholar 

  27. P. M. B. Vitányi and M. Li, Minimum description length induction, Bayesianism, and Kolmogorov complexity, Manuscript, CWI, Amsterdam, 1996.

    Google Scholar 

  28. F. J. Yndurain, Quantum chwmodynamics: an introduction to the theory of quarks and gluons, Springer-Verlag, N.Y., 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fox, D., Schmidt, M., Koshelev, M., Kreinovich, V., Longpré, L., Kuhn, J. (1998). We must Choose the Simplest Physical Theory: Levin-Li-Vitányi Theorem and its Potential Physical Applications. In: Erickson, G.J., Rychert, J.T., Smith, C.R. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5028-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5028-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6111-7

  • Online ISBN: 978-94-011-5028-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics