Skip to main content

Mechanisms of the Hypolipidemic Action of Fibrates

  • Chapter
Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 277 Accesses

Abstract

Fibrates are generally effective in lowering elevated plasma triglycerides and cholesterol. The magnitude of lipid changes depends however upon the patients’ pretreatment lipoprotein status [1],as well as upon the unique properties of each fibrate. The most pronounced effects of fibrates are a decrease in plasma triglyceride-rich lipoproteins and an increase in high density lipoprotein cholesterol (HDL-C) levels when baseline plasma concentrations are low [1]. The changes in the different lipoprotein fractions are reflected by changes in the concentrations of their major apolipoproteins. Fibrates efficiently reduce the apo C-III-containing particles of this lipoprotein class, which may be markers for increased risk for atherogenesis [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tikkanen MJ. Fibric acid derivatives. Curr Opin Lipidol 1992; 3: 29–33.

    Article  CAS  Google Scholar 

  2. Bard JM, Parra HJ, Camare R, et al. A multicenter comparison of the effects of simvastatin and fenofibrate therapy in severe primary hypercholesterolemia, with particular emphasis on lipoproteins defined by their apolipoprotein composition. Metabolism 1992; 41: 498–503.

    Article  CAS  PubMed  Google Scholar 

  3. Heller F, Harvengt C. Effects of clofibrate, bezafibrate, fenofibrate, and probucol on plasma lipolysic enzymes in normolipidaemic subjects. Eur J Clin Pharmacol 1983; 23: 57–63.

    Article  Google Scholar 

  4. Goldberg AP, Applebaum-Bowden DM, Bierman EL, et al. Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N Engl J Med 1979; 301: 1073–76.

    Article  CAS  PubMed  Google Scholar 

  5. Schoonjans K, Watanabe M, Suzuki H, et al. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 1995; 270: 19269–76.

    Article  CAS  PubMed  Google Scholar 

  6. Lamb RG, Koch JC, Bush SR. An enzymatic explanation of the differential effects of oleate and gemfibrozil on cultured hepatocyte triacylglycerol and phosphatidylcholine biosynthesis and secretion. Biochim Biophys Acta 1993; 1165: 299–305.

    Article  CAS  PubMed  Google Scholar 

  7. Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995; 96: 741–50.

    Article  CAS  PubMed  Google Scholar 

  8. Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995; 96: 741–50.

    Article  CAS  PubMed  Google Scholar 

  9. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–95.

    Article  CAS  PubMed  Google Scholar 

  10. Zimetbaum P, Frishman WH, Kahn S. Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol 1991; 31: 25–37.

    CAS  PubMed  Google Scholar 

  11. Schoonjans K, Staels B, Deeb S, Auwerx J Fibrates and fatty acids induce lipoprotein lipase gene expression via the peroxisome proliferator activated receptor. Circulation 1995;92/8:I-495.

    Google Scholar 

  12. Staels B, Vu-Dac N, Kosykh V, et al. Fibrates down-regulate apolipoprotein C-III expression independent of induction of peroxisomal acyl co-enzyme A oxidase. J Clin Invest 1995; 95: 705–12.

    Article  CAS  PubMed  Google Scholar 

  13. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs, suppression of apolipoprotein C-III. J Biol Chem 1995; 270: 13470–75.

    Article  CAS  PubMed  Google Scholar 

  14. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs, suppression of apolipoprotein C-III. J Biol Chem 1995; 270: 13470–75.

    Article  CAS  PubMed  Google Scholar 

  15. Frenkel B, Mayorek N, Hertz R, Bar-Tana J. The hypochylomicronemic effect of beta, beta’- methyl-substituted hexadecanedioic acid (MEDICA 16) is mediated by a decrease in apolipoprotein C-III. J Biol Chem 1988; 263: 8491–97.

    CAS  PubMed  Google Scholar 

  16. Schaffer JE, Lodish HF. Expression cloning and characterization of a novel long chain fatty acid transport protein. Cell 1994; 79: 427–36.

    Article  CAS  PubMed  Google Scholar 

  17. Abumrad NA, El-Maghrabi MR, Amri E-Z, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J Biol Chem 1993; 268: 17665–68.

    CAS  PubMed  Google Scholar 

  18. Aarsland A, Berge R. Peroxisome proliferating sulphur-and oxysubstituted fatty acid analogues are activated to acyl coenzyme A thioesters. Biochem Pharmacol 1990; 41: 53–61.

    Article  Google Scholar 

  19. Asiedu DK, Al-Shurbaji A, Rustan AC, Björkhem I, Berge RK. Hepatic fatty acid metabolism as a determinant of plasma and liver triacylglycerol levels. Studies on tetradecylthioacetic and tetradecylthiopropionic acids. Eur J Biochem 1995; 227: 715–22.

    Article  CAS  PubMed  Google Scholar 

  20. Blake WL, Clarke SD. Suppression of rat hepatic fatty acid synthase and S 14 transcription by dietary polyunsaturated fat. J Nutr 1990; 120: 1727–29.

    CAS  PubMed  Google Scholar 

  21. Rustan AC, Christiansen EN, Drevor CA. Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids. Biochem J 1992; 283: 333–39.

    CAS  PubMed  Google Scholar 

  22. Staels B, Van Tol A, Andreu T, Auwerx J. Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat. Arterioscl Thromb 1992; 12: 286–94.

    Article  CAS  PubMed  Google Scholar 

  23. Berthou L, Saladin R, Yaqoob P, et al. Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II, and acyl-CoA oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 1995; 232: 179–87.

    Article  CAS  PubMed  Google Scholar 

  24. Malmendier CL, Delcroix C. Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis 1985; 55: 161–69.

    Article  CAS  PubMed  Google Scholar 

  25. Mellies MJ, Stein EA, Khoury P, Lamkin G, Glueck CJ. Effects of fenofibrate on lipids, lipoproteins and apolipoproteins in 33 subjects with primary hypercholesterolaemia. Atherosclerosis 1987; 63: 57–64.

    Article  CAS  PubMed  Google Scholar 

  26. Vu-Dac N, Schoonjans K, Laine B, Fruchart JC, Auwerx J, Staels B. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem 1994; 269: 31012–18.

    CAS  PubMed  Google Scholar 

  27. Ikewaki K, Zech LA, Kindt M, Brewer HBJ, Rader DJ. Apolipoprotein A-II production rate is a major factor regulating the distribution of apolipoprotein A-I among HDL subclasses LpA-I and LpA-I:A-II in normolipidemic humans. Arter Thromb Vasc Biol 1995; 15: 306–12.

    Article  CAS  Google Scholar 

  28. Lussier-Cacan S, Bard J-M, Boulet L, et al. Lipoprotein composition changes induced by fenofibrate in dysbetalipoproteinemia type III. Atherosclerosis 1989; 78: 167–82.

    Article  CAS  PubMed  Google Scholar 

  29. Sirtori C, Franceschini G, Gianfranceschini G, et al. Activity profile of gemfibrozil on the major plasma lipoprotein parameters. Eur J Epidemiol 1992; 8: 120–24.

    Article  PubMed  Google Scholar 

  30. Bradford RH, Goldberg AC, Schonfeld G, Knopp RH. Double-blind comparison of bezafibrate versus placebo in male volunteers with hyperlipoproteinemia. Atherosclerosis 1992; 92: 31–40.

    Article  CAS  PubMed  Google Scholar 

  31. Dachet C, Cavalerro E, Martin C, Girardot G, Jacotot B. Effect of gemfibrozil on the concentration and composition of very low density and low density lipoprotein subfractions in hypertriglyceridemic patients. Atherosclerosis 1995; 113: 1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pauciullo P, Marotta G, Rubba P, et al. Serum lipoproteins, apolipoproteins and very low density lipoprotein subfractions during 6-month fibrate treatment in primary hypertriglyceridaemia. J Intern Med 1990; 228: 425–30.

    Article  CAS  PubMed  Google Scholar 

  33. de Graaf J, Hendriks JC, Demacker PN, Stalenhoef AF. Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after clofibrate treatment. Arterioscl Thromb 1993; 13: 712–19.

    Article  PubMed  Google Scholar 

  34. Avogaro P, Ghiselli G, Soldan S, Bittolo-Bon G. Relationship of triglycerides and HDL cholesterol in hypertriglyceridaemia. Atherosclerosis 1992; 92: 79–86.

    Article  CAS  PubMed  Google Scholar 

  35. Mann CJ, Yen FT, Grant AM, Bihain BE. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991; 88: 2059–66.

    Article  CAS  PubMed  Google Scholar 

  36. Weis S, Kudchodkar BJ, Clearfield MB, Lacko AG. The efficacy of gemfibrozil therapy for raising high density lipoprotein levels. Artery 1992; 19: 353–66.

    CAS  PubMed  Google Scholar 

  37. Ditschuneit HH, Fletchtner-Mors M, Hagel E, Ditschuneit H. Postprandial lipoprotein metabolism in obese patients with moderate hypertriglyceridaemia: Effect of gemfibrozil. J Intern Med Res 1992; 20: 197–210.

    CAS  Google Scholar 

  38. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994; 106: 83–97.

    Article  CAS  PubMed  Google Scholar 

  39. Athyros VG, Papageorgiou AA, Avramidis MJ, Kontopoulos AG. Long-term effect of gemfibrozil on coronary heart disease risk profile of patients with primary combined hyperlipidaemia. Coron Artery Dis 1995; 6: 251–56.

    CAS  PubMed  Google Scholar 

  40. Bruckert E, Desager S, Chapman MJ. Ciprofibrate therapy normalises the atherogenic low-density lipoprotein subspecies profile in combined hyperlipidemia (published erratum appears in Atherosclerosis 1993;102(1):129). Atherosclerosis 1993; 100: 91–102.

    Article  CAS  PubMed  Google Scholar 

  41. Cattin L, Da-Col PG, Feruglio FS, et al. Efficacy of ciprofibrate in primary type II and IV hyperlipidemia: The Italian multicenter study. Clin Ther 1990; 12: 482–88.

    CAS  PubMed  Google Scholar 

  42. Hokanson JE, Austin MA, Zambon A, Brunzell JD. Plasma triglyceride and LDL heterogenity in familial combined hyperlipidemia. Arterioscl Thromb 1993; 13: 427–34.

    Article  CAS  PubMed  Google Scholar 

  43. Summary of the second report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol adults (adult treatment panel II). JAMA 1993; 269: 3015–23.

    Article  Google Scholar 

  44. Prevention of coronary heart disease: Scientific background and new clinical guidelines. Recommendations of the European Atherosclerosis Society prepared by international task force for preventions of coronary heart disease. Nut Metab Cardiovasc Dis 1992; 2: 113–56.

    Google Scholar 

  45. Lupien PJ, Brun D, Gagne C, Moorjani S, Bielman P, Julien P. Gemfibrozil therapy in primary type II hyperlipoproteinemia: Effects on lipids, lipoproteins and apolipoproteins. Can J Cardiol 1991; 7: 27–33.

    CAS  Google Scholar 

  46. Tilly-Kiesi M, Tikkanen MJ. Low density lipoprotein density and composition in hypercholesterolaemic men treated with HMG CoA reductase inhibitors and gemfibrozil. J Intern Med 1991; 229: 427–34.

    Article  CAS  PubMed  Google Scholar 

  47. Tsai MY, Yuan J, Hunninghake DB. Effect of gemfibrozil on composition of lipoproteins and distribution of LDL subspecies. Atherosclerosis 1992; 95: 35–42.

    Article  CAS  PubMed  Google Scholar 

  48. Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990; 85: 193–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Auwerx, J., Dallongeville, J., Fruchart, JC., Staels, B. (1998). Mechanisms of the Hypolipidemic Action of Fibrates. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics