Skip to main content

New Insights into the Role of HDL in the Development of Cardiovascular Disease

  • Chapter
  • 269 Accesses

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

Abstract

Epidemiological studies have consistently demonstrated that plasma concentrations of high density lipoprotein (HDL) cholesterol are inversely correlated with the incidence of coronary heart disease (CHD) [1,2]. Although the mechanisms by which HDL protects against atherosclerosis remain to be definitively established, HDL has been postulated to facilitate the efflux of cholesterol from peripheral cells and transport the cholesterol back to the liver in a process termed reverse cholesterol transport [3]. The major apolipoprotein constituents of HDL are apoA-I and apoA-II. Plasma concentrations of apoA-I are inversely correlated with CHD, however the association of apoA-II levels with CHD has not been consistent [4,5]. A schematic overview of the proposed role of HDL in reverse cholesterol and lipoprotein metabolism is illustrated in Figure 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller GJ, Miller NE. Plasma high-density lipoprotein concentration and development of ischaemic heart-disease. Lancet 1975; 1: 16–19.

    Article  PubMed  CAS  Google Scholar 

  2. Gordon DJ, Rifkind BM. High-density lipoprotein: The clinical implications of recent studies. N Engl J Med 1989; 321: 1311–16.

    Article  PubMed  CAS  Google Scholar 

  3. Glomset JA, Janssen ET, Kennedy R, Dobbins J. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res 1966; 7: 638–48.

    PubMed  CAS  Google Scholar 

  4. Miller NE. Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J 1987; 113: 589–97.

    Article  PubMed  CAS  Google Scholar 

  5. Rader DJ, Hoeg JM, Brewer HB, Jr. Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med 1994; 120: 1012–25.

    PubMed  CAS  Google Scholar 

  6. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). JAMA 1993; 269: 3015–23.

    Article  Google Scholar 

  7. European Atherosclerosis Society. The recognition and management of hyperlipidemia in adults: A policy statement of the European Atherosclerosis Society. Eur Heart J 1988; 9: 571–660.

    Google Scholar 

  8. Rader DJ, Ikewaki K, Duverger N, et al. Very low high-density lipoproteins without coronary atherosclerosis. Lancet 1993; 342: 1455–58.

    Article  PubMed  CAS  Google Scholar 

  9. Glomset JA, Assmann G, Gjone E, Norum KR Lecithin:cholesterol acyltransferase deficiency and fish eye disease. In: Scriver CR, Beaudet AL, Sly WS, et al. The metabolic and molecular bases of inherited disease. 7th ed. New York: McGraw-Hill, Inc., 1995: 1933–51.

    Google Scholar 

  10. Schaefer EJ, Genest JJ, Jr., Ordovas JM, Salem DN, Wilson PWF. Familial lipoprotein disorders and premature coronary artery disease. Atherosclerosis 1994; 108 (Suppl.): S41–S54.

    Article  PubMed  Google Scholar 

  11. Brunzell JD, Schrott HG, Motulsky AG, Bierman EL. Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism 1976; 25: 313–20.

    Article  PubMed  CAS  Google Scholar 

  12. Hoeg JM, Feuerstein IM, Tucker EE. Detection and quantitation of calcific atherosclerosis by Ultrafast CT in children and young adults with homozygous familial hypercholesterolemia. Arterioscler Thromb 1994; 14: 1066–74.

    Article  PubMed  CAS  Google Scholar 

  13. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990; 85: 1234–41.

    Article  PubMed  CAS  Google Scholar 

  14. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 1991; 353: 265–67.

    Article  PubMed  CAS  Google Scholar 

  15. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1994; 91: 9607–11.

    Article  PubMed  CAS  Google Scholar 

  16. Rader DJ, Schaefer JR, Lohse P, et al. Increased production of apolipoprotein A-I associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-I, and lipoprotein A-I in a patient with familial hyperalphalipoproteinemia. Metabolism 1993; 42: 1429–34.

    Article  PubMed  CAS  Google Scholar 

  17. Hoeg JM, Vaisman BL, Demosky SJ, Jr., et al. Lecithin-cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem 1996; 271: 4396–4402.

    Article  PubMed  CAS  Google Scholar 

  18. Hoeg JM, Santamarina-Fojo S, Berard AM, et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci USA 1996; 93: 11448–53.

    Article  PubMed  CAS  Google Scholar 

  19. McLean J, Wion K, Drayna D, Fielding C, Lawn R. Human lecithin-cholesterol acyltransferase gene: Complete gene sequence and sites of expression. Nucleic Acids Res 1986; 14: 9397–9406.

    Article  PubMed  CAS  Google Scholar 

  20. Glomset JA. The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 1968; 9: 155–67.

    PubMed  CAS  Google Scholar 

  21. Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithin:cholesterol acyltransferasc and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem 1989; 264: 7066–72.

    PubMed  CAS  Google Scholar 

  22. Chen CH, Albers JJ. Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins. Biochem Biophys Res Commun 1982; 107: 1091–96.

    Article  PubMed  CAS  Google Scholar 

  23. Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochem 1988; 27: 25–29.

    Article  CAS  Google Scholar 

  24. Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res 1993; 34: 1255–1274.

    PubMed  CAS  Google Scholar 

  25. Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1985; l: 1–39.

    Article  CAS  Google Scholar 

  26. Herz J, Hamann U, Rogne S, Myklebos O, Gausepohl H, Stanley KK. Surface location and high affinity for calcium of a 500 kDa liver membrane protein closely related to the LDL receptor suggest a physiological role as a lipoprotein receptor. EMBO J 1988; 7: 4119–27.

    PubMed  CAS  Google Scholar 

  27. Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS. Sequence identity between alpha2-Macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 1990; 265: 17401–4.

    PubMed  CAS  Google Scholar 

  28. Miller NE, La Ville A, Crook D. Direct evidence that reverse cholesterol transport is mediated by high-density lipoprotein in rabbit. Nature 1985; 314: 109–11.

    Article  PubMed  CAS  Google Scholar 

  29. Vaisman BL, Klein H-G, Rouis M, et al. Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem 1995; 270: 12269–75.

    Article  PubMed  CAS  Google Scholar 

  30. Vaisman BL, Klein H-G, Rouis M, et al. Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem 1995; 270: 12269–75.

    Article  PubMed  CAS  Google Scholar 

  31. Tall AR. Plasma cholesteryl ester transfer protein and high-density lipoproteins: new insights from molecular genetic studies. J Intern Med 1995;237:5–12.

    Article  PubMed  CAS  Google Scholar 

  32. Koizumi J, Mabuchi H, Yoshimura A, et al. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis 1985; 58: 175–86.

    Article  PubMed  CAS  Google Scholar 

  33. Kurasawa T, Yokoyama S, Miyake Y, Yamamura T, Yamamoto A. Rate of cholesteryl ester transfer between high and low density lipoproteins in human serum and a case with decreased transfer rate in association with hyperalphalipoproteinemia. J Biochem (Tokyo) 1985; 98: 1499–1508.

    CAS  Google Scholar 

  34. Ikewaki K, Rader DJ, Sakamoto T, et al. Delayed catabolism of high-density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest 1993; 92: 1650–58.

    Article  PubMed  CAS  Google Scholar 

  35. Hirano K-I, Yamashita S, Kuga Y, et al. Atherosclerotic disease in marked hyperalphalipoproteinemia: Combined reduction of cholesteryl ester transfer protein and hepatic triglyccride lipase. Arterioscler Thromb Vasc Biol 1995; 15: 1849–56.

    Article  PubMed  CAS  Google Scholar 

  36. Thong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97: 2917–23.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brewer, H.B. (1998). New Insights into the Role of HDL in the Development of Cardiovascular Disease. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics