Skip to main content

New Aspects of Morgan-Voyce Polynomials

  • Chapter

Abstract

What formal connection, if any, is there between the equation

$$ {\mu ^{2n}} - {L_n}{\mu ^n} + {( - 1)^n} = 0 $$
(1.1)

(where L n is the n th Lucas number) and the Morgan-Voyce polynomials B n(x) and b n(x), to be defined in (2.1)–(2.6)? From the Binet forms [7] for L n and F n (the n th Fibonacci number), we readily have

$$ _{\beta = {\rm{ }} = \frac{{{L_n} - \sqrt {5{F_n}} }}{2}}^{\alpha n = \frac{{{L_n} - \sqrt {5{F_n}} }}{2}}\left. {} \right\} $$
(1.2)

where

$$ \alpha = \frac{{1 + \sqrt 5 }}{2},{\rm{ }}\beta = \frac{{1 - \sqrt 5 }}{2} $$
(1.3)

are the roots of the characteristic quadratic equation t 2 - t - 1 = 0 for both F n and L n. Thus, αn and βn are the roots of (1.1) or, alternatively, of

$$ {v^{2n}} - \sqrt {5{F_n}{v^n} + {{( - 1)}^{n + 1}} = 0} $$
(1.4)

since [7]

$$ 5F_n^2 - L_n^2 = 4{( - 1)^{n + 1}} $$
(1.5)

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André-Jeannin, R. “A Generalization of Morgan-Voyce Polynomials.” The Fibonacci Quarterly, Vol. 32.3, (1994): pp. 228–231.

    Google Scholar 

  2. André-Jeannin, R. “A Note on a General Class of Polynomials.” The Fibonacci Quarterly, Vol. 32.5, (1994): pp. 445–454.

    Google Scholar 

  3. André-Jeannin, R. “A Note on a General Class of Polynomials, Part II.” The Fibonacci Quarterly, Vol. 33.4, (1995): pp. 341–351.

    Google Scholar 

  4. Brocard, M.H. “Notes Élémentaires sur le Problème de Peel.” [*PELL (et non PEEL) — editorial correction.] Nouvelle Correspondance Mathématique, Vol. 4, (1878): pp. 166–167.

    Google Scholar 

  5. Euler, L. Opera Omnia. Teubner, Leipzig (1911).

    Google Scholar 

  6. Faccio, M., Ferri, G., and D’Amico, A. “The DFF and DFFZ Triangles and Their Mathematical Properties.” Applications of Fibonacci Numbers. Volume 5. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Dordrecht, The Netherlands, (1993): pp. 199–206.

    Google Scholar 

  7. Hoggatt, V.E. Jr. Fibonacci and Lucas Numbers. Houghton Mifflin, Boston (1969).

    MATH  Google Scholar 

  8. Horadam, A.F. “A Synthesis of Certain Polynomial Sequences.” Applications of Fibonacci Numbers. Volume 6. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Dordrecht, The Netherlands, (1996): pp. 215–229.

    Google Scholar 

  9. Lahr, J. “Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line Theory.” Fibonacci Numbers and Their Applications. Volume 2. Edited by A.N. Philippou, G.E. Bergum and A.F. Horadam, Dordrecht, The Netherlands, (1986): pp. 141–161.

    Google Scholar 

  10. Magnus, W., Oberhettinger, F. and Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer-Verlag (1966).

    Google Scholar 

  11. Morgan-Voyce, A.M. “Ladder Networks Analysis Using Fibonacci Numbers.” I.R.E. Trans. Circuit Theory, Vol. 6.3, (1959): pp. 321–322.

    Article  Google Scholar 

  12. Rivlin, T. The Chebvshev Polynomials. Wiley (1974).

    Google Scholar 

  13. Sloane, N.J.A. A Handbook of Integer Sequences. Academic Press (1973).

    Google Scholar 

  14. Swamy, M.N.S. “Properties of the Polynomials Defined by Morgan-Voyce.” The Fibonacci Quarterly, Vol. 4.1, (1966): pp. 73–81.

    Google Scholar 

  15. Swamy, M.N.S. “Further Properties of Morgan-Voyce Polynomials.” The Fibonacci Quarterly, Vol. 6.2, (1968): pp. 166–175.

    MathSciNet  Google Scholar 

  16. Swamy, M.N.S. and Bhattacharyya, B.B. “A Study of Recurrent Ladders Using the Polynomials Defined by Morgan-Voyce.” IEEE Transactions on Circuit Theory, Vol. CT-14, (September, 1967): pp. 260–264.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horadam, A.F. (1998). New Aspects of Morgan-Voyce Polynomials. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics