Skip to main content

Some Probabilistic Aspects of the Zeckendorf Decomposition of Integers

  • Chapter
Applications of Fibonacci Numbers

Abstract

That any positive integer N can be represented as a sum of distinct nonconsecutive Fibonacci numbers F i is a well-known fact. Apart from the equivalent use of F 2 instead of F 1, such a representation is unique [1] and is commonly refereed to as the Zeckeniorf Decomposition (or Representation) of N [ZD(N), in brief].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, J.L., Jr. “Zeckendorf’s Theorem and Some Applications.” The Fibonacci Quarterly, Vol. 2.3 (1964): pp. 163–168.

    Google Scholar 

  2. Filipponi, P. “A Note on te Representation of Integers as a Sum of Distinct Fibonacci Numbers.” The Fibonacci Quarterly, Vol. 24.4 (1986): pp. 336–343.

    MathSciNet  Google Scholar 

  3. Filipponi, P. and Horadam, A.F. “Derivative Sequences of Fibonacci and Lucas Polynomials.” Applications of Fibonacci Numbers. Volume 4. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991: pp. 99–108.

    Chapter  Google Scholar 

  4. Filipponi, P. and Horadam, A.F. “Second Derivative Sequences of Fibonacci and Lucas Polynomials.” The Fibonacci Quarterly, Vol. 31.3 (1993): pp. 194–204.

    MathSciNet  Google Scholar 

  5. Filipponi, P. “Incomplete Fibonacci and Lucas Numbers.” Rend. Circ. Mat. Palermo, Series II, Vol. 45.1 (1996): pp. 37–56.

    Article  MathSciNet  Google Scholar 

  6. Grabner, P.J., Tichy, R.F., Nemes, I. and Pethö, A. “Generalized Zeckendorf Expansions.” Appl. Math. Lett., Vol. 7.2 (1994): pp. 25–28.

    Article  Google Scholar 

  7. Freitag, H.T. and Filipponi, P. “On the Representation of Integral Sequences F n/d and L n/d as Sums of Fibonacci Numbers and as Sums of Lucas Numbers.” Applications of Fibonacci Numbers. Volume 2. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988: pp. 97–112.

    Chapter  Google Scholar 

  8. Hoggatt, V.E., Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.

    MATH  Google Scholar 

  9. Hoggatt, V.E., Jr. “Convolution Triangles for Generalized Fibonacci Numbers.” The Fibonacci Quarterly, Vol. 8.2 (1970): pp. 158–171.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Filipponi, P., Freitag, H.T. (1998). Some Probabilistic Aspects of the Zeckendorf Decomposition of Integers. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics