Skip to main content

Part of the book series: Immunology and Medicine Series ((IMME,volume 26))

Abstract

Fc receptors form one of the front lines of membrane receptors in immune defence mechanisms by providing humoral immunity with powerful cell-mediated effector mechanisms. These are activated by the binding of antigen-antibody complexes to specific Fc receptors. The interaction of immunoglobulins with Fc receptors has profound biological effects, including: activation of cell mediated killing, induction of mediator release, uptake, removal and destruction of antibody-coated particles, including pathogens, transport of immunoglobulins, and the regulation of immunity. Since the molecular cloning of Fc receptor genes and the development of sophisticated molecular analytical techniques, there have been major advances in understanding the structure of Fc receptors and defining the molecular basis of the interaction between these receptors and their ligands. In this chapter we will attempt to provide an overview on what is known about this interaction and we will especially review the work relating to the high affinity IgG receptor FcγRI. In recent years there have been several extensive reviews of Fc receptor structure, especially in relation to the IgG receptors and FcεRI and we would draw the reader’s attention to these [1– 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hogarth PM, Hulett MD, Ierino FL, Tate B, Powell MS, Brinkworth RI. Identification of the immunoglobulin binding regions (IBR) of FcγRII and FcεRI. Immunol Rev. 1992; 125: 21–35.

    Article  PubMed  CAS  Google Scholar 

  2. Hulett MD, Hogarth PM. Molecular basis of Fc Receptor function. Adv Immunol. 1994; 57: 1–127.

    Article  PubMed  CAS  Google Scholar 

  3. Hogarth PM, Hulett MD. Immunoglobulin Fc Receptors. Biomembranes. 1996; 3: 269–314.

    CAS  Google Scholar 

  4. Powell MD, Hulett MD, Brinkworth RI, Hogarth PM. Human FcγR-ligand interaction. In: van de Winkel J. Capel P, eds, Human Fc Receptors. Heidelberg: RG Landes; 1996: 7–25.

    Google Scholar 

  5. Rigby AJ. Hulett MD, Brinkworth RI, Hogarth PM. The structural basis of the interaction of IgE and FcεRI. In: Hamawy MM, ed., IgE Receptor (FcεRI) Function in Mast Cells and Basophils. Heidelberg: RG Landes; 1996: 7–32.

    Google Scholar 

  6. Hulett MD, McKenzie IFC, Hogarth PM. Chimeric receptors identify immunoglobulin binding regions in human FcγRII and FcεRI. Eur J Immunol. 1993; 23:.

    Google Scholar 

  7. Hulett MD, Witwort E, Brinkworth RI, McKenzie IFC, Hogarth PM. Identification of the IgG Binding Site for the human low affinity receptor for IgG, FcγRII: enhancement and ablation of binding by site directed mutagenesis. J Biol Chem. 1994; 269: 15287–93.

    PubMed  CAS  Google Scholar 

  8. Hulett MD, Witort E, Brinkworth RI, McKenzie IFC, Hogarth PM. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J Biol Chem. 1995; 270: 21188–94.

    Article  PubMed  CAS  Google Scholar 

  9. Hibbs ML, Tolvanen M, Carpen O. Membrane proximal Ig-like domain of FcγRIII (CD16) contains residues critical for ligand binding. J Immunol. 1994; 152: 4466–74.

    PubMed  CAS  Google Scholar 

  10. Tamm A, Kister A, Nolte KU, Gessner JE, Schmidt RE. The IgG binding site of human FcγRIIIB receptor involves CC and FG loops of the membrane proximal domain. J Biol Chem. 1996; 271: 3659–66.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson CL, Abraham GN. Characterisation of the Fc receptor for IgG on the human macrophage cell line, U937. J Immunol. 1980; 125: 2735–41.

    PubMed  CAS  Google Scholar 

  12. Anderson CL, Guyre PM, Whitin JC, Ryan DH, Looney RJ. Fanger MW. Monoclonal antibodies to Fc receptors for IgG on human mononuclear phagocytes. Antibody characterisation and induction of Superoxide production in a monocyte cell line. J Biol Chem. 1986; 261: 12856–64.

    PubMed  CAS  Google Scholar 

  13. Dougherty GJ. Selvendran Y, Murdoch S, Palmer DG, Hogg N. The human mononuclear phagocyte high-affinity Fc receptor, FcRI, defined by a monoclonal antibody 10.1. Eur J Immunol. 1987; 17: 1453–60.

    Article  PubMed  CAS  Google Scholar 

  14. Frey J. Engelhardt W. Characterisation and structural analysis of Fcγreceptors of human monocytes, a monoblast cell line (U937) and a myeloblast cell line (HL-60) by a monoclonal antibody. Eur J Immunol. 1987; 17: 583–91.

    Article  PubMed  CAS  Google Scholar 

  15. Peltz GA, Frederick K, Anderson CL, Peterlin BM. Characterization of the human monocyte high affinity Fc receptor (huFcRI). Mol Immunol. 1988; 25: 243–50.

    Article  PubMed  CAS  Google Scholar 

  16. Quilliam AL, Osman N, McKenzie IFC, Hogarth PM. Biochemical characterisation of murine FcγRI. Immunology. 1993; 78: 358–63.

    PubMed  CAS  Google Scholar 

  17. Allen JM, Seed B. Isolation and expression of functional high affinity Fc receptor complementary DNAs. Science. 1989; 243: 378–81.

    Article  PubMed  CAS  Google Scholar 

  18. Sears DW, Osman N, Tate B, McKenzie IFC, Hogarth PM. Molecular cloning and expression of the mouse high affinity Fc receptor for IgG. J Immunol. 1990; 144: 371–8.

    PubMed  CAS  Google Scholar 

  19. Ernst LK, Duchemin AM, Anderson CL. Association of the high affinity receptor for IgG (FcγRI) with the γsubunit of the IgE receptor. Proc Natl Acad Sci USA. 1993; 90: 6023–7.

    Article  PubMed  CAS  Google Scholar 

  20. Scholl PR, Geha RS. Physical association between the high-affinity IgG receptor (FcγRI) and the γsubunit of the high-affinity IgE receptor. Proc Natl Acad Sci USA. 1993; 90: 6023–9.

    Article  Google Scholar 

  21. Masuda M, Roos D. Association of all three types of FcγR (CD64, CD32, CD16) with a γchain homodimer in cultured human monocytes. J Immunol. 1993; 151: 7188–95.

    PubMed  CAS  Google Scholar 

  22. Gavin AL, Hamilton JA, Hogarth PM. Extracellular mutations of non-obese diabetic mouse FcγRI modify surface expression and ligand binding. J Biol Chem. 1996; 271: 17091–9.

    Article  PubMed  CAS  Google Scholar 

  23. Miller KL, Duchemin AM, Anderson CL. A novel role for the Fc receptor γsubunit: enhancement of FcγR ligand affinity. J Exp Med. 1996; 183: 2227–32.

    Article  PubMed  CAS  Google Scholar 

  24. Letourneur O, Kennedy ICS, Brini AT, Ortaldo JR, O’Shea JJ. Kinet J-P. Characterisation of the family of dimers associated with Fc receptors (FcεRI and FcγRIII). J Immunol. 1991; 147: 2652–6.

    PubMed  CAS  Google Scholar 

  25. van Vugt MJ. Heijnen AF, Capel P.J. et al. FcR-γchain is essential for both surface expression and function of human FcγRI (CD64) in vivo. Blood. 1996; 87: 3593–9.

    PubMed  Google Scholar 

  26. Fries LF, Hall RP, Lawley TJ. Crabtree GR, Frank MM. Monocyte receptor for the Fc portion of IgG studies with monomeric human IgG1: normal in vitro expression of Fc receptors in HLA-B8/Drw3 subjects with defective Fc-mediated in vivo clearance. J Immunol. 1982; 129: 1041–9.

    PubMed  CAS  Google Scholar 

  27. Kurlander RJ. Batker J. The binding of human immunoglobulin G1 monomer and small, covalently cross linked polymers of immunoglobulin G1 to human peripheral blood monocytes and polymorphonuclear leukocytes. J Clin Invest. 1982; 69: 1–8.

    Article  PubMed  CAS  Google Scholar 

  28. Woof JM, Partridge LF, Jeffries R, Burton DR. Localisation of the monocyte-binding region on human immunoglobulin G. Mol Immunol. 1986; 23: 319–30.

    Article  PubMed  CAS  Google Scholar 

  29. Wiener E, Atwal A, Thompson KM, Melamed MD, Gorick B, Hughes-Jones NC. Differences between the activities of human monoclonal IgG1 and IgG3 subclasses of anti-D (Rh) antibody in their ability to mediate red cell binding to macrophages. Immunology. 1987; 62: 401–8.

    PubMed  CAS  Google Scholar 

  30. Jones DH, Looney RJ. Anderson CL. Two distinct classes of IgG Fc receptors on a human monocyte line (U937) defined by differences in binding of murine IgG subclasses at low ionic strength. J Immunol. 1985; 135: 3348–53.

    PubMed  CAS  Google Scholar 

  31. van de Winkel JGJ. Tax WJM, van Bruggen MCJ et al. Characterisation of two Fc receptors for mouse immunoglobulins on human monocytes and cell lines. Scand J Immunol. 1987; 26: 663–72.

    Article  PubMed  Google Scholar 

  32. Ceuppens JL, van Vaecjk F. Human T. cell activation induced by a monoclonal mouse IgG3 anti-CD3 antibody (Riv9) requires binding of the Fc part of the antibody to the monocytic 72 kDa high affinity Fc receptor (FcRI). Cell Immunol. 1989; 118: 136–46.

    Article  PubMed  CAS  Google Scholar 

  33. Haagen IA, Geerars AJ. Clark MR, van de Winkel JGJ. Interaction of human monocyte Fcγreceptors with rat IgG2b-A new indicator for the FcγRIIa (R-H131) polymorphism. J Immunol. 1995; 154: 1852–60.

    PubMed  CAS  Google Scholar 

  34. Cosio FG, Ackerman SK, Douglas SD, Friend PS, Michael AF. Soluble immune complexes binding to human monocytes and polymorphonuclear leukocytes. Immunology. 1981; 44: 773–80.

    PubMed  CAS  Google Scholar 

  35. Crowell RE, Du Clos TW, Montoya G, Heaphy E, Mold C. C-reactive protein receptors on the human monocytic cell line U937. Evidence for additional binding to FcγRI. J Immunol. 1991; 147: 3445–50.

    PubMed  CAS  Google Scholar 

  36. Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW. C-reactive protein binds to FcγRI in transfected Cos cells. J Immunol. 1995; 155: 2185–90.

    PubMed  CAS  Google Scholar 

  37. Robey FA, Jones KD, Tanaka T, Liu TY. Binding of C-reactive protein to chromatin and nucleosome core particles: a possible physiological role of C-reactive protein. J Biol Chem. 1984; 259: 7311–16.

    PubMed  CAS  Google Scholar 

  38. Salonen EM, Vartio T, Hedman K, Vaheri A. Binding of fibronectin by the acute phase reactant C-reactive protein. J Biol Chem. 1984; 259: 1496–502.

    PubMed  CAS  Google Scholar 

  39. Du Clos TW, Zlock LT, Rubin RL. Analysis of the binding of C reactive protein to histones and chromatin. J Immunol. 1988; 141: 4266–71.

    PubMed  Google Scholar 

  40. Swanson SJ. McPeek MM, Mortensen RF. Characteristics of the binding of human C reactive protein (CRP) to laminin. J Cell Biochem. 1989; 40: 121–6.

    Article  PubMed  CAS  Google Scholar 

  41. Zeller JM, Kubak BM, Gewurz H. Binding sites for C-reactive protein on human monocytes are distinct from IgG Fc receptors. Immunology. 1989; 67: 51–8.

    PubMed  CAS  Google Scholar 

  42. Tebo JM, RF Mortensen. Characterisation and isolation of a C-reactive protein receptor from the monocytic cell line U-937. J Immunol. 1990; 144: 231–7.

    PubMed  CAS  Google Scholar 

  43. van Vugt MJ. van den Herik-Oudijk IE, van de Winkel JGJ. Binding of PE-CY5 conjugates to the human high affinity receptor for IgG (CD64). Blood. 1996; 88: 2358–61.

    PubMed  Google Scholar 

  44. Unkeless JC, Eisen HN. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J Exp Med. 1975; 142: 152–033.

    Article  Google Scholar 

  45. Hulett MD, Osman N, McKenzie IFC, Hogarth PM. Chimeric Fc receptors identify functional domains of the murine FcγRI high affinity receptor for IgG. J Immunol. 1991; 147: 1863–8.

    PubMed  CAS  Google Scholar 

  46. Haeffner-Cavaillon N, Dorrington KJ. Klein M. Studies of the Fcγreceptor of the murine macrophage-like cell line P388D1. II. Binding of human IgG subclass proteins and their proteolytic fragments. J Immunol. 1979; 123: 1914–19.

    PubMed  CAS  Google Scholar 

  47. HaerTner-Cavaillon N, Klein M, Dorrington KJ. Studies of the Fcγreceptor of the murine macrophage-like cell line P388D1. I. The binding of homologous and heterologous immunoglobulin G. J Immunol. 1979; 123: 1905–13.

    Google Scholar 

  48. Porges AJ. Redecha PB, Doebele R, Pan LC, Salmon JE, Kimberly RP. Novel Fcγreceptor I family gene products in human mononuclear cells. J Clin Invest. 1992; 90: 2101–9.

    Article  Google Scholar 

  49. O’Grady JH, Looney RJ. Anderson CL. The valence for ligand of the human monocyte phagocyte 72 kD high affinity IgG Fc receptor is one. J Immunol. 1986; 137: 2307–10.

    PubMed  Google Scholar 

  50. Koolwijk P, Spierenburg GT, Frasa T, Boot JHA, van de Winkel JGJ, Bast BJ. Interaction between hybrid mouse monoclonal antibodies and the human high-affinity IgG FcR, human FcγRI, on U937: involvement of only one of the mlgG heavy chains in receptor binding. J Immunol. 1989; 143: 1656–62.

    PubMed  CAS  Google Scholar 

  51. Woof JM, Nik Jaafar MI, Jefferies R, Burton DR. The monocyte binding domains on human immunoglobulin G. Mol Immunol. 1984; 21: 523–7.

    Article  PubMed  CAS  Google Scholar 

  52. Partridge LF, Woof JM, Jefferies R, Burton DR. The use of anti-IgG monoclonal antibodies in mapping the monocyte subpopulation in human peripheral blood. Mol Immunol. 1988; 23: 1365–72.

    Article  Google Scholar 

  53. Shopes B, Weetall M, Holowka D, Baird B. Recombinant human IgG1-murine IgE chimeric Ig: construction, expression and binding to human Fcγreceptors. J Immunol. 1990; 145: 3842–8.

    PubMed  CAS  Google Scholar 

  54. Canfield SM, Morrison SL. The binding affinity of human IgG2 for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med. 1991; 173: 1483–91.

    Article  PubMed  CAS  Google Scholar 

  55. Chappel MS, Isenman DE, Everett M, Xu YY, Dorrington KJ. Klein MH. Identification of the Fc γreceptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point mutated antibodies. Proc Natl Acad Sci USA. 1991; 88: 9036–40.

    Article  PubMed  CAS  Google Scholar 

  56. Lund J. Winter G, Jones PT. et al. Human FcγRI and FcγRII interact with distinct but overlapping sites on human IgG. J Immunol. 1991; 147: 2657–62.

    PubMed  CAS  Google Scholar 

  57. Duncan AR, Woof JM, Partridge LJ. Burton DR, Winter G. Localization of the binding site for the human high affinity Fc receptor for IgG. Nature. 1988; 332: 563–4.

    Article  PubMed  CAS  Google Scholar 

  58. Burton DR, Jefferis R, Partridge LJ. Woof JM. Molecular recognition of antibody by cellular Fc receptor (FcRI). Mol Immunol. 1988; 25: 1175–81.

    Article  PubMed  CAS  Google Scholar 

  59. Chappel MS, Isenman DE, Oomen R, Xu YY, Klein MH. Identification of a secondary FcγRI binding site within a genetically engineered human IgG antibody. J Biol Chem. 1993; 268: 25124–31.

    PubMed  CAS  Google Scholar 

  60. Lund J. Takahashi N, Pound JD, Goodall M, Nakagawa H, Jefferis R. Oligosaccharide-protein interactions in IgG can modulate recognition by Fcγreceptors. FASEB J. 1995; 9: 115–19.

    PubMed  CAS  Google Scholar 

  61. Lund J. Takahashi N, Pound JD, Goodall M, Jefferis R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human FcγRI and influence the synthesis of its oligosaccharide chains. J Immunol. 1996; 157: 4963–9.

    PubMed  CAS  Google Scholar 

  62. Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994; 15: 81–6.

    Article  PubMed  CAS  Google Scholar 

  63. Whitehead AS, Rits M, Michaelson J. Molecular genetics of mouse serum amyloid P component (SAP): cloning and gene mapping. Immunogenetics. 1988; 28: 388–91.

    Article  PubMed  CAS  Google Scholar 

  64. Woo P, Korenberg JR, Whitehead AS. Characterisation of genomic and complementary DNA sequences of human C-reactive protein, comparison with the complementary DNA sequence of serum amyloid P component. J Biol Chem. 1985; 260: 13384–89.

    PubMed  CAS  Google Scholar 

  65. Zahedi K, Tebo JM, Siripont J. Klimo GF, Mortensen RF. Binding of human C-reactive protein to mouse macrophages is mediated by distinct receptors. J Immunol. 1989; 142: 2384–9.

    PubMed  CAS  Google Scholar 

  66. Mellman IS, Unkeless JC. Purification of a functional mouse Fc receptor through the use of a monoclonal antibody. J Exp Med. 1980; 152: 1048–69.

    Article  PubMed  CAS  Google Scholar 

  67. Mellman IS, Plutner H, Steinman RM, Unkeless JC, Cohn ZA. Internalization and degradation of macrophage Fc receptors during receptor mediated phagocytosis. J Cell Biol. 1983; 96: 887–95.

    Article  PubMed  CAS  Google Scholar 

  68. Cohen L, Sharp S, Kulczycki A Jr. Human monocytes, B lymphocytes and non-B lymphocytes each have structurally unique Fc receptors. J Immunol. 1983; 131: 378–83.

    PubMed  CAS  Google Scholar 

  69. Pilkington GR, Kraft N, Murdolo V et al. Serological typing of acute leukaemia using the monoclonal antibodies PHM 1,2,3,6, CIKM5 and the rabbit antisera RARC2a (Ad) and RAALLP50. In: Bernard A et al., eds, Leukocyte Typing. Berlin, Heidelberg: Springer-Verlag; 1984: 588.

    Google Scholar 

  70. Green SA, Plutner H, Mellman I. Biosynthesis and intracellular transport of the mouse macrophage Fc receptor. J Biol Chem. 1985; 260: 9867–71.

    PubMed  CAS  Google Scholar 

  71. Hibbs ML, Hogarth PM, McKenzie IFC. The mouse Lyl 7 locus identifies a polymorphism of the Fc receptor. Immunogenetics. 1985; 22: 335–48.

    Article  PubMed  CAS  Google Scholar 

  72. Holmes KL, Palfree RGE, Hammerling U, Morse HC Alleles of Lyl7 alloantigen define polymorphism of the murine IgG Fc receptor. Proc Natl Acad Sci USA. 1985; 82: 7706–10.

    Article  PubMed  CAS  Google Scholar 

  73. Rosenfeld SI, Looney RJ. Leddy JP, Phipps DC, Abraham GN, Anderson CL. Human platelet Fc receptor for immunoglobulin G: Identification as a 40,000 molecular weight membrane protein shared by monocytes. J Clin Invest. 1985; 76: 2317–22.

    Article  PubMed  CAS  Google Scholar 

  74. Vaughn M, Taylor M, Mohanakumar T. Characterization of human IgG Fc receptors. J Immunol. 1985; 135: 4059–65.

    PubMed  CAS  Google Scholar 

  75. Looney RJ. Abraham GN, Anderson CL. Human monocytes and U937 cells bear two distinct Fc receptors for IgG. J Immunol. 1986; 136: 1641–7.

    PubMed  CAS  Google Scholar 

  76. van de Winkel JGJ. van Ommen R, Huizinga TWJ et al. Proteolysis induces increased binding afiinity of the monocyte type II FcR for human IgG. J Immunol. 1989; 143: 571–8.

    PubMed  Google Scholar 

  77. Ierino FL, Hulett MD, McKenzie IFC, Hogarth PM. Human FcγRII monoclonal antibodies define structural domains. J Immunol. 1993; 150: 1794–9.

    PubMed  CAS  Google Scholar 

  78. van den Herik-Oudijk IE, Westerdaal NAC, Henriquez NV, Capel PJA, van de Winkel JGJ. Functional analysis of human FcγRII (CD32) isoforms expressed in B lymphocytes. J Immunol. 1994; 152: 574–85.

    Google Scholar 

  79. Karas SP, Rosse WF, Kurlander RJ. Characterisation of the IgG-Fc receptor on human platelets. Blood. 1982; 60: 1277–82.

    PubMed  CAS  Google Scholar 

  80. Kurlander RJ. Haney AF, Gartrell J. Human peritoneal macrophages possess two populations of IgG Fc receptors. Cell Immunol. 1984; 86: 479–90.

    Article  PubMed  CAS  Google Scholar 

  81. Tax WJM, van de Winkel JGJ. Human Fcγreceptor II: A standby receptor activated by proteolysis? Immunol Today. 1990; 11: 308–10.

    Article  PubMed  CAS  Google Scholar 

  82. Koenderman L, Hermans SW, Capel PJA, van de Winkel JGJ. Granulocyte-macrophage colony-stimulating factor induces sequential activation and deactivation of binding via a low-affinity IgG Fc receptor, hFcγRII, on human eosinophils. Blood. 1993; 81: 2413–19.

    PubMed  CAS  Google Scholar 

  83. Walker MR, Lund J. Thompson KM, Jefferies R. Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing FcγRI and/or FcγRII receptors. Biochem J. 1989; 259: 1347–53.

    Google Scholar 

  84. van de Winkel J. Anderson CL. Biology of human IgG Fc receptors. J Leuk Biol. 1991; 49: 511–24.

    Google Scholar 

  85. Warmerdam PAM, van de Winkel JGJ. Vlug A, Westerdaal NAC, Capel PJA. A single amino acid in the second Ig-like domain of the human Fcγreceptor II is critical in human IgG2 binding. J Immunol. 1991; 147: 1338–43.

    PubMed  CAS  Google Scholar 

  86. Warmerdam PAM, van de Winkel JGJ. Grosselin EJ. Capel PJA. Molecular basis for a polymorphism of human FcγRII (CD32). J Exp Med. 1990; 172: 19–25.

    Article  PubMed  CAS  Google Scholar 

  87. Tate BJ. Witort E, McKenzie IFC, Hogarth PM. Expression of the high responder/non-responder human FcγRII: Analysis by PCR and transfection into FcR COS cells. Immunol Cell Biol. 1992; 70: 79–87.

    Article  PubMed  CAS  Google Scholar 

  88. Warmerdam PAM, van den Herik-Oudijk IE, Parren PWHI, Westerdaal NAC, van de Winkel JGJ. Capel PJA. Interaction of human FcγRIIbl (CD32) isoform with murine and human IgG subclasses. Int Immunol. 1993; 3: 239–47.

    Article  Google Scholar 

  89. Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Ann Rev Immunol. 1988; 6: 251–81.

    Article  CAS  Google Scholar 

  90. Mellman I, Koch T, Healey G et al. Structure and function of Fc receptors on macrophages and lymphocytes. J Cell Sci. 1988; 9(suppl.):45–65.

    Google Scholar 

  91. Unkeless JC. The presence of two Fc receptors on mouse macrophages:Evidence from a variant cell line and differential trypsin sensitivity. J Exp Med. 1977; 145: 931–47.

    Article  PubMed  CAS  Google Scholar 

  92. Unkeless JC. Characterisation of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979; 150: 580–96.

    Article  PubMed  CAS  Google Scholar 

  93. Heuser CH, Anderson CL, Grey HM. Receptors for IgG: subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line. J Exp Med. 1977; 145: 1316–27.

    Article  Google Scholar 

  94. Lopez AF, Strath M, Sanderson CJ. Mouse immunoglobulin isotypes mediating cytotoxicity of target cells by eosinophils and neutrophils. Immunology. 1983; 48: 503–9.

    PubMed  CAS  Google Scholar 

  95. Teillaud JL, Diamond B, Pollock RR, Fajtova V, Scharff MD. Fc receptors on cultured myeloma and hybridoma cells. J Immunol. 1985; 134: 1774–9.

    PubMed  CAS  Google Scholar 

  96. Diamond B, Yelton DE. A new Fc receptor on mouse macrophages binding IgG3. J Exp Med. 1981; 153: 514–19.

    Article  PubMed  CAS  Google Scholar 

  97. Takizawa F, Adamczewski M, Kinet JP. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as FcγRII and FcγRIII. J Exp Med. 1992; 176: 469–75.

    Article  PubMed  CAS  Google Scholar 

  98. Clark MR, Clarkson SB, Ory PA, Stollman N, Goldstein IM. Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J Immunol. 1989; 143: 1731–4.

    PubMed  CAS  Google Scholar 

  99. Parren PW, Warmerdam PAM, Boeije LC, Capel PJ. van de Winkel JGJ. Aarden LA. Characterization of IgG FcR-mediated proliferation of human T cells induced by mouse and human anti-CD3 monoclonal antibodies: Identification of a functional polymorphism to human IgG2 anti-CD3. J Immunol. 1992; 148: 695–701.

    PubMed  CAS  Google Scholar 

  100. Shen FW, Boyse EA. An alloantigen selective for B cells Ly 17.1. Immunogenetics. 1980;11: 315–17.

    Article  PubMed  CAS  Google Scholar 

  101. Davidson WF, Morse III HC, Mathieson BJ. Kozak CA, Shen FW. The B-cell alloanligen Ly 17.1 is controlled by a gene closely linked to Ly20 and Ly9 on chromosome 1. Immunogenetics. 1983; 17: 325–9.

    Article  PubMed  CAS  Google Scholar 

  102. Lah M, Quelch K, Deacon NJ. McKenzie IFC, Hogarth PM. Identification of the mouse β FcγRIl polymorphism by direct sequencing of amplified genomic DNA. Immunogenetics. 1990; 31: 202–6.

    Article  PubMed  CAS  Google Scholar 

  103. Fleit HB, Wright SD, Unkless JC. Human neutrophil Fcγreceptor distribution and structure. Proc Natl Acad Sci USA. 1982; 79: 3275–9.

    Article  PubMed  CAS  Google Scholar 

  104. Rumpold H, Kraft D, Obexer G, Bock G, Gebhart W. A monoclonal antibody against a surface antigen shared by human large granular lymphocytes and granulocytes. J Immunol. 1982; 129: 1458–64.

    PubMed  CAS  Google Scholar 

  105. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF. Subpopulations of human natural killer cells defined by expression of the leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983; 131: 1789–96.

    PubMed  CAS  Google Scholar 

  106. Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor function. J Immunol. 1983; 130: 2133–41.

    PubMed  CAS  Google Scholar 

  107. Kulczycki A. Human neutrophils and eosinophils have structurally distinct Fcγreceptors. J Immunol. 1984; 133: 849–54.

    PubMed  CAS  Google Scholar 

  108. Simmons D, Seed B. The Fcγreceptor of natural killer cells is a phospholipid-linked membrane protein. Nature. 1988; 333: 568–70.

    Article  PubMed  CAS  Google Scholar 

  109. Edberg JC, Redecha PB, Salmon JE, Kimberly RP. Human FcγRIII (CD16): Isoforms with distinct allelic expression, extracellular domains and membrane linkages on polymorpho-nuclear and natural killer cells. J Immunol. 1989; 143: 1642–9.

    PubMed  CAS  Google Scholar 

  110. Peltz GA, Grundy HO, Labo RV, Yssel H, Barsh GS, Moore KW. Human FcγRIII cloning, expression, identification of the chromosomal locus of two Fc receptors for IgG. Proc Natl Acad Sci USA. 1989; 86: 1013–17.

    Article  PubMed  CAS  Google Scholar 

  111. Scallon BJ. Scigliano E, Freedman VH et al. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphoinositol-glycan anchored forms. Proc Natl Acad Sci USA. 1989; 86: 5079–83.

    Article  PubMed  CAS  Google Scholar 

  112. Ravetch JV, Perussia B. Alternative membrane forms of FcγRIII (CD16) on human NK cells and neutrophils: Cell-type specific expression of two genes which differ in single nucleotide substitutions. J Exp Med. 1989; 170: 481–91.

    Article  PubMed  CAS  Google Scholar 

  113. Qiu WQ, De Bruin D, Brownstein BH, Pearse R, Ravetch JV. Organization of the human and mouse low-affinity FcγR genes: Duplication and recombination. Science. 1990; 248: 732–5.

    Article  PubMed  CAS  Google Scholar 

  114. Kurosaki T, Ravetch JV. A single amino acid in the GPI attachment domain determines the membrane topology of FcγRIII. Nature. 1989; 342: 805–7.

    Article  PubMed  CAS  Google Scholar 

  115. Selvaraj P, Carpen O, Hibbs ML, Springer TA. Natural killer cell and granulocyte Fcγreceptor III (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989; 143: 3283–8.

    PubMed  CAS  Google Scholar 

  116. Lanier LL, Ruitenberg JJ. Phillips JH. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol. 1988; 141: 3478–85.

    PubMed  CAS  Google Scholar 

  117. Hibbs ML, Selvaraj P, Carpen O et al. Mechanisms for regulating expression of membrane isoforms of FcγRIII (CD16). Science. 1989; 246: 1608–11.

    Article  PubMed  CAS  Google Scholar 

  118. Kurosaki T, Gander I, Wirthmueller U, Ravetch JV. The βsubunit of FcεRI is associated with the FcγRIII on mast cells. J Exp Med. 1992; 175: 447–451.

    Article  PubMed  CAS  Google Scholar 

  119. Lanier LL, Yu G, Phillips JH. Co-association of CD3-z with receptor (CD16) for IgG on human natural killer cells. Nature. 1989; 342: 803–5.

    Article  PubMed  CAS  Google Scholar 

  120. Ra C, Jouvin M-H, Blank U, Kinet J-P. A macrophage Fcγreceptor and the mast cell receptor for immunoglobulin E share an identical subunit. Nature. 1989; 341: 752–4.

    Article  PubMed  CAS  Google Scholar 

  121. Vance BA, Huizinga TWJ. Guyre PM. Functional polymorphism of FcγRIII on human LGL/NK cells. FASEB J. 1992; 6: 1620A.

    Google Scholar 

  122. Anderson CL, Looney RJ. Human leukocyte IgG Fc receptors. Immunol Today. 1986; 7: 2646.

    Article  Google Scholar 

  123. Huizinga TWJ. van Kemenade F, Koenderman L et al. The 40-kDa FcγReceptor (FcRII) on human neutrophils is essential for the IgG induced respiratory burst and IgG-induced phagocytosis. J Immunol. 1989; 142: 2365–9.

    PubMed  CAS  Google Scholar 

  124. Kipps TJ. Parham P, Punt J. Herzenberg LA. Importance of immunoglobulin isotype in human antibody dependent cell mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med. 1985; 161: 1–17.

    Article  PubMed  CAS  Google Scholar 

  125. Anasetti C, Martin PJ. Morishita Y. Badger CC, Bernstein ID, Hansen JA. Human large granular lymphocytes express high affinity receptors for murine monoclonal antibodies of the IgG3 subclass. J Immunol. 1987; 138: 2979–81.

    PubMed  CAS  Google Scholar 

  126. Braakman E, van de Winkel JGJ. van Krimpen BA, Janze M, Bolhuis RLH. CD16 on human gd T lymphocytes: Expression, function and specificity for mouse IgG isotypes. Cell Immunol. 1993; 143: 97–107.

    Article  Google Scholar 

  127. Ghirlando R, Keown MB, Mackay GA, Lewis MS, Unkeless JC, Gould HJ. Stoichiometry and thermodynamics of the interaction between the Fc fragment of human IgG1 and its low-alfinity receptor FcγRIII. Biochemistry. 1995; 34: 13320–7.

    Article  PubMed  CAS  Google Scholar 

  128. Tamm A, Schmidt RE. The binding epitopes of human CD16 (FcγRIII) monoclonal antibodies. Implications lor ligand binding. J Immunol. 1996; 157: 1576–81.

    PubMed  CAS  Google Scholar 

  129. Barnett-Foster DE, Sjoquist J. Painter RH. The effect of fragment B of staphyloccocal protein A on the binding of rabbit IgG to human granulocytes and monocytes. Mol Immunol. 1982; 19: 407–12.

    Article  PubMed  CAS  Google Scholar 

  130. Sarmay G, JelTeries R, Klein E, Benczur M, Gergely J. Mapping of the functional topography of IgG Fcγwith monoclonal antibodies: Localisation of epitopes interacting with the binding sites of Fc receptor on human K cells. Eur J Immunol. 1985; 1–5: 1037–42.

    Google Scholar 

  131. Lund J. Tanaka T, Takahashi N, Sarmay G, Arata Y, Jerferis R. A protein structural change in aglycosylated IgG3 correlates with loss of huFcγRI and huFcγRIII binding and/or activation. Mol Immunol. 1990; 27:l 145–53.

    Google Scholar 

  132. Ravetch JV and Kinet J-P. Fc receptors. Ann Rev Immunol. 1991; 9: 457–62.

    Article  CAS  Google Scholar 

  133. Miller L, Blank U, Metzger H, Kinet J-P. Expression of high affinity binding of human immunoglobulin E by transfected cells. Science. 1989; 244: 334–7.

    Article  PubMed  CAS  Google Scholar 

  134. Ra C, Jouvin M-H,, Kinet J-P. Complete structure of the mouse mast cell receptor for IgE (FcεRI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J Biol Chem. 1989; 264: 15323–7.

    PubMed  CAS  Google Scholar 

  135. Kuster H, Zhang L, Brini AT, MacGlashan DWJ. Kinet J-P. The gene and cDNA for the human high affinity immunoglobulin E receptor βchain and expression of the complete human receptor. J Biol Chem. 1992; 267: 12782–7.

    PubMed  CAS  Google Scholar 

  136. Kulczycki A, Metzger H. The interaction of IgE with rat basophilic leukemia cells. II Quantitative aspects of the binding reaction. J Exp Med. 1974; 140: 1676–95.

    Article  PubMed  Google Scholar 

  137. Ishizaka T, Dvorak AM, Conrad DH, Niebyl JR, Marquett JP, Ishizaka K. Morphologic and immunological characterization of human basophils developed in cultures of cord blood mononuclear cells. J Immunol. 1985; 134: 532–40.

    PubMed  CAS  Google Scholar 

  138. Conrad DH, Wingard JR, Ishizaka T. The interaction of human and rodent IgE with the human basophil IgE receptor. J Immunol. 1983; 130: 327–33.

    PubMed  CAS  Google Scholar 

  139. Keown MB, Ghirlando R, Young RJ et al. Hydrodynamic studies of a complex between the Fc fragment of human IgE and a soluble fragment of the FcεRI alpha chain. Proc Natl Acad Sci USA. 1995; 92: 1841–5.

    Article  PubMed  CAS  Google Scholar 

  140. Hakimi J. Seals C, Kondas JA, Pettine L, Danho W, Kochan J. The αsubunit of the human IgE receptor (FcεRI) is sufficient for high affinity IgE binding. J Biol Chem. 1990; 265: 22079–81.

    PubMed  CAS  Google Scholar 

  141. Blank U, Ra C, Kinet J-P. Characterization of truncated αchain products from human, rat and mouse high affinity receptor for Immunoglobulin E. J Biol Chem. 1990; 266: 2639–46.

    Google Scholar 

  142. Ra C, Kuromitsu S, Hirose T, Yasuda S, F’uruichi K and Okumura K. Soluble human high-affinity receptor for IgE abrogates the IgE-mediated allergic reaction. Int Immunol. 1993; 5: 47–54.

    Article  PubMed  CAS  Google Scholar 

  143. Haak-Frendscho M, Ridgway J. Schields R, Robbins K, Gorman C, Jardieu P. Human IgE receptor a chain IgG-chimera blocks passive cutaneous anaphylaxis reaction in vivo. J Immunol. 1993; 151: 351–8.

    PubMed  CAS  Google Scholar 

  144. Gavin AL, Hulett MD, McKenzie IFC, Hogarth PM. Expression of recombinant soluble FcεRI: function and tissue distribution studies. Immunology. 1995; 86: 392–8.

    PubMed  CAS  Google Scholar 

  145. Riske F, Hakimi J. Mallamaci M et al. High affinity human IgE receptor (FcεRI): Analysis of functional domains of the αsubunit with monoclonal antibodies. J Biol Chem. 1991; 266: 11245–51.

    PubMed  CAS  Google Scholar 

  146. Mallamaci MA, Chizzonite R, GrilTen M et al. Identification of sites on the human FcεRI αsubunit which are involved in binding human and rat IgE. J Biol Chem. 1993; 268: 22076–83.

    PubMed  CAS  Google Scholar 

  147. Robertson MW. Phage and Escherichia coli expression of the human high affinity immunoglobulin E receptor alpha sub unit ecto-domain. J Biol Chem. 1993; 268: 12736–43.

    PubMed  CAS  Google Scholar 

  148. McDonnell JM, Beavil AJ. Mackay GA et al. Structure based design and characterisation of peptides that inhibit IgE binding to its high affinity receptor. Nat Struct Biol. 1996; 3: 419–26.

    Article  PubMed  CAS  Google Scholar 

  149. Perez-Montfort R, Metzger H. Proteolysis of soluble IgE receptor complexes: Localization of sites on IgE which interact with the Fc receptor. Mol Immunol. 1982; 19: 1113–25.

    Article  PubMed  CAS  Google Scholar 

  150. Helm BA, Marsh P, Vercelli D, Padlan E, Gould H, Geha R. The mast cell binding site on human immunoglobulin E. Nature. 1988; 331: 180–3.

    Article  PubMed  CAS  Google Scholar 

  151. Helm BA, Kebo D, Vercelli D et al. Blocking of passive sensitization of human mast cells and basophil granulocytes with IgE antibodies by a recombinant human ε-chain fragment of 76 amino acids. Proc Natl Acad Sci USA. 1989; 86: 9465–9.

    Article  PubMed  CAS  Google Scholar 

  152. Basu M, Hakimi J. Dharm E et al. Purification and characterization of human recombinant IgE-Fc fragments that bind to the human high affinity IgE receptor. J Biol Chem. 1993; 268: 13118–25.

    PubMed  CAS  Google Scholar 

  153. Presta L, Shields R, O’Connell L et al. The binding site of human immunoglobulin E for its high affinity receptor. J Biol Chem. 1994; 269: 26368–73.

    PubMed  CAS  Google Scholar 

  154. Helm BA, Sayers I, Higginbottom A et al. Identification of the high affinity receptor binding region in human immunoglobulin E. J Biol Chem. 1996; 271: 7494–500.

    Article  PubMed  CAS  Google Scholar 

  155. Weetall M, Shopes B, Holowka D, Baird B. Mapping of the site of interaction between murine IgE and its high affinity receptor with chimeric Ig. J Immunol. 1990; 145: 3849–54.

    PubMed  CAS  Google Scholar 

  156. Nissim AS, Jouvin MHE, Eshhar Z. Mapping of the high affinity Fcεreceptor binding site to the third constant region domain of IgE. EMBO J. 1991; 10: 101–7.

    PubMed  CAS  Google Scholar 

  157. Nissim AS, Schwarzbaum R, Siraganian R, Eshhar Z. Fine specificity of the IgE interaction with the low and high affinity Fcεreceptors. J Immunol. 1993; 150: 1365–74.

    PubMed  CAS  Google Scholar 

  158. Morton HC, van Egmond M, van de Winkel JG. Structure and function of human IgA Fc receptors (FcαR). Crit Rev Immunol. 1996; 16: 423–40.

    PubMed  CAS  Google Scholar 

  159. Maliszewski CR, March C. J. Schrenborn MA, Gimpel S, Shen L. Expression cloning of a human Fc receptor for IgA. J Exp Med. 1990; 172: 1665–72.

    Article  PubMed  CAS  Google Scholar 

  160. Monteiro RC, Cooper MD, Kubagawa H. Molecular heterogeneity of Fcαreceptors detected by receptor specific monoclonal antibodies. J Immunol. 1992; 148: 1764–70.

    PubMed  CAS  Google Scholar 

  161. Morton HC, van den Herik-Oudijk IE, Vossebeld P et al. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR γchain association. J Biol Chem. 1995; 270: 29781–7.

    Article  PubMed  CAS  Google Scholar 

  162. Albrechtsen M, Yeaman GR, Kerr MA. Characterisation of the IgA Receptor from human polymorphic nuclear leukocytes. Immunology. 1988; 64: 205–10.

    Google Scholar 

  163. Monteiro RC, Kubagawa H, Cooper MD. Cellular distribution, regulation and biochemical nature of an FcαReceptor in humans. J Exp Med. 1990; 171: 597–613.

    Article  PubMed  CAS  Google Scholar 

  164. Stewart WW and Kerr MA. The specificity of the human neutrophil IgA receptor (FcαR) determined by measurement of chemiluminescence induced by serum or secretory IgA, or IgA2. Immunology. 1990; 71: 328–34.

    PubMed  CAS  Google Scholar 

  165. Pleass RJ. Andrews PD, Kerr MA, Woof JM. Alternative splicing of the human IgA Fc receptor CD89 in neutrophils and eosinophils. Biochem J. 1996; 318: 771–7.

    PubMed  CAS  Google Scholar 

  166. van Dijk TB, Bracke M, Caldenhoven E, Lammers JWJ. Koendermanl I, Der Groot RP. Cloning and characterisation of FcαRB-a novel Fcαreceptor (CD89) isoform expressed in eosinophils and neutrophils. Blood. 1996; 88: 4229–38.

    PubMed  Google Scholar 

  167. Carayannopoulos L, Hexham JM, Capra JD. Localisation of the binding site for monocyte immunoglobulin (IgA) Fc Receptor (CD89) to the domain boundary between Ca2 and Ca3 in Human IgA,. J Exp Med. 1996; 183: 1579–86.

    Article  PubMed  CAS  Google Scholar 

  168. Simister NE, Rees AR. Isolation and characterisation of an Fc receptor from neo-natal rat small intestine. Eur J Immunol. 1985; 15: 733–8.

    Article  PubMed  CAS  Google Scholar 

  169. Jakoi ER, Cambier J, Saslow S. Transepithelial transport of maternal antibody: purification of IgG receptor from newborn rat intestine. J Immunol. 1985; 135: 3360–4.

    PubMed  CAS  Google Scholar 

  170. Simister NE, Mostov KE. An Fc receptor structurally related to MHC Class I antigens. Nature. 1989; 337: 184–7.

    Article  PubMed  CAS  Google Scholar 

  171. Ahouse J, Hagerman CL, Mittal P et al. Mouse MHC. Class 1-like Fc receptor encoded outside MHC. J Immunol. 1993; 151: 6076–88.

    PubMed  CAS  Google Scholar 

  172. Raghavan M, Wang Y, Bjorkman PJ. Effects of receptor dimerisation on the interaction between the Class 1 major histocompatibility complex-related Fc receptor and IgG. Proc Natl Acad Sci USA. 1995; 92: 11200–4.

    Article  PubMed  CAS  Google Scholar 

  173. Brambell FWR, Hemmings WA, Morris IG. A theoretical model of γ-globulin catabolism. Nature. 1964; 203: 1352–5.

    Article  PubMed  CAS  Google Scholar 

  174. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the β-2 microglobulin-containing neo-natal intestinal transport receptor. Proc Natl Acad Sci USA. 1996; 93: 5512–16.

    Article  PubMed  CAS  Google Scholar 

  175. Hobbs SM, Jackson LE, Peppard JV. Binding of subclass of rat immunoglobulin G to detergent-isolated Fc receptor from neo-natal rat intestine. J Biol Chem. 1987; 262: 8041–6.

    PubMed  CAS  Google Scholar 

  176. Huber AH, Kelley RF, Gastinel, LN, Bjorkman PJ. Crystallisation and stoichiometry of binding of a complex between a rat intestinal receptor and Fc. J Mol Biol. 1993; 230: 1077–83.

    Article  PubMed  CAS  Google Scholar 

  177. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ. Crystal structure at 2.2υresolution of the MHC related neonatal Fc receptor. Nature. 1994; 372: 336–43.

    Article  PubMed  CAS  Google Scholar 

  178. Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the rat neonatal Fc receptor with Fc. Nature. 1994; 372: 379–83.

    Article  PubMed  CAS  Google Scholar 

  179. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis and pH dependence of the neo-natal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochem. 1995; 34: 1649–57.

    Google Scholar 

  180. Kim JK, Tsen MF, Ghetie V, Ward ES. Localisation of the site of the murine IgG, molecule that is involved in binding to the murine intestinal Fc receptor. Eur J Immunol. 1994; 24: 2429–34.

    Article  PubMed  CAS  Google Scholar 

  181. Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984; 308: 37–43.

    Article  PubMed  CAS  Google Scholar 

  182. Mostov KE. Transepithelial transport of immunoglobulins. Ann Rev Immunol. 1994; 12: 63–84.

    Article  CAS  Google Scholar 

  183. Frutiger S, Hughes GJ, Hanly WC, Kingette M, Jaton JC. The amino-terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J Biol Chem. 1986; 261: 16673–81.

    PubMed  CAS  Google Scholar 

  184. Bakos MA, Kurosky A, Goldblum RM. Characterisation of a critical binding site for human polymeric Ig on secretory component. J Immunol. 1991; 147: 3419–26.

    PubMed  CAS  Google Scholar 

  185. Bakos MA, Kurosky A, Czerwinski EW, Goldblum RM. A conserved binding site on the receptor for polymeric Ig is homologous to CD R1 of Ig V kappa domains. J Immunol. 1993; 951: 1346–52.

    Google Scholar 

  186. Coyne RS, Siebrecht M, Peitsch MC, Casanova JE. Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementary determining regions (CDR)-like loops in receptor domain I. J Biol Chem. 1994; 269: 31620–5.

    PubMed  CAS  Google Scholar 

  187. Piskunch JF, Blanchard MH, Youngman KR, France JA, Kaetzel CS. Molecular cloning of mouse polymeric Ig receptor. Functional regions are conserved among five mammalian species. J Immunol. 1995; 154: 1735–47.

    Google Scholar 

  188. Bakos MA, Kurosky A, Woodard CS, Denney RM, Goldblum RM. Probing the topography of free and polymeric Ig-bound human secretory component with monoclonal antibodies. J Immunol. 1991; 146: 162–8.

    PubMed  CAS  Google Scholar 

  189. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ. The covalent structure of an entire gamma G immunoglobulin molecule. Proc Natl Acad Sci USA. 1969; 63: 78–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gavin, A., Hulett, M., Hogarth, P.M. (1998). Molecular basis for the interaction of Fc receptors with immunoglobulins. In: van de Winkel, J.G.J., Hogarth, P.M. (eds) The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. Immunology and Medicine Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5018-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5018-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6106-3

  • Online ISBN: 978-94-011-5018-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics