Skip to main content

A Mean Field Learning Algorithm for Unsupervised Neural Networks

  • Chapter
Learning in Graphical Models

Part of the book series: NATO ASI Series ((ASID,volume 89))

Abstract

We introduce a learning algorithm for unsupervised neural networks based on ideas from statistical mechanics. The algorithm is derived from a mean field approximation for large,layered sigmoid belief networks. We show how to (approximately) infer the statistics of these networks without resort to sampling. This is done by solving the mean field equations, which relate the statistics of each unit to those of its Markov blanket. Using these statistics as target values, the weights in the network are adapted by a local delta rule. We evaluate the strengths and weaknesses of these networks for problems in statistical pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive Science 9: 147–169 (1985).

    Article  Google Scholar 

  2. C. Peterson and J. R. Anderson. A mean field theory learning algorithm for neural networks. Complex Systems 1: 995–1019 (1987).

    MATH  Google Scholar 

  3. C. Galland. The limitations of deterministic Boltzmann machine learning. Network 4: 355–379.

    Google Scholar 

  4. R. Neal. Connectionist learning of belief networks. Artificial Intelligence 56: 71–113 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann: San Mateo, CA (1988).

    Google Scholar 

  6. S. Lauritzen. Graphical Models. Oxford University Press: Oxford (1996).

    Google Scholar 

  7. G. Hinton, P. Dayan, B. Frey, and R. Neal. The wake-sleep algorithm for unsupervised neural networks. Science 268: 1158–1161 (1995).

    Article  Google Scholar 

  8. P. Dayan, G. Hinton, R. Neal, and R. Zemel. The Helmholtz machine. Neural Computation 7: 889–904 (1995).

    Article  Google Scholar 

  9. M. Lewicki and T. Sejnowski. Bayesian unsupervised learning of higher order structure. In M. Mozer, M;. Jordan, and T. Petsche, eds. Advances in Neural Information Processing Systems 9: MIT Press: Cambridge (1996).

    Google Scholar 

  10. L. Saul, T. Jaakkola, and M. Jordan. Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research 4: 61–76 (1996).

    MATH  Google Scholar 

  11. G. Cooper. Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42: 393–405 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Dagum and M. Luby. Approximately probabilistic reasoning in Bayesian belief networks is NP-hard. Artificial Intelligence 60: 141–153 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Parisi. Statistical Field Theory. Addison-Wesley: Redwood City (1988).

    MATH  Google Scholar 

  14. J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley: Redwood City (1991).

    Google Scholar 

  15. B. Frey, G. Hinton, and P. Dayan. Does the wake-sleep algorithm produce good density estimators? In D. Touretzky, M. Mozer, and M. Hasselmo, eds. Advances in Neural Information Processing Systems 8: 661–667. MIT Press: Cambridge, MA (1996).

    Google Scholar 

  16. Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. Muller, E. 5ackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for handwritten digit recognition. In Proceedings of ICA NN’95.

    Google Scholar 

  17. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge University Press: Cambridge (1986).

    Google Scholar 

  18. S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic networks with hidden variables. In Proceedings of IJCAI-95.

    Google Scholar 

  19. A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical SocietyB39: 1–38.

    MathSciNet  Google Scholar 

  20. P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. Hanson, J. Cowan, and C. Giles, eds. Advances in Neural Information Processing Systems 5: 50–58. Morgan Kaufmann: San Mateo, CA (1993).

    Google Scholar 

  21. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741 (1984).

    Article  MATH  Google Scholar 

  22. H. Seung. Annealed theories of learning. In J.-H. Oh, C. Kwon, and S. Cho, eds. Neural Networks: The Statistical Mechanics Perspective, Proceedings of the CTPPRSRI Joint Workshop on Theoretical Physics. World Scientific: Singapore (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saul, L., Jordan, M. (1998). A Mean Field Learning Algorithm for Unsupervised Neural Networks. In: Jordan, M.I. (eds) Learning in Graphical Models. NATO ASI Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5014-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5014-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6104-9

  • Online ISBN: 978-94-011-5014-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics